Opti 501 Solutions

Problem 34)

a) Incident beam:

k'= (/) (sin O, X —0s ,7) , (1a)
E, = E,(cos ;X +sin 6,32), (1b)
H, =k'x E/(1,0) =~ (E;/Z,) ¥, (1c)
E'(r,t) = E;(cos G, X +sin G,7) exp[i (w/c) (xsin §; — zcos 6, —ct)], (1d)
H'(r,t)=—(E,/Z,) § exp[i(w/c)(xsin §, — zcos G, —ct)]. (1e)
Transmitted beam:
k'=(nw/c)(sin g, X —cos b, 7), (2a)
E,=E (cosd, X +sind, 2), (2b)
Hi=k'x E/(u,u0)=—(NEYZ), (2¢)
E'(r,t) = Ej(cosd X +sin b, Z) exp[i (w/c) (xnsindy — zncos G —ct)] , (2d)
H'(r,t)=—(nE;/Z,) ¥ exp[i(ew/c)(xnsing,— zn cos &, —ct)]. (2e)

b) At the z=0 interface we must have singd,=nsing; (Snell’s law), so that the exponential
factors will match. Also, continuity of the tangential E-field, Ey, yields Eé Cosf; = E;cose'B,
while the continuity of the tangential H-field, Hy, yields Egan;. Combining the last two
equations, we find ncosé,=cosé#,. This equation together with Snell’s law may now be solved

for the two unknowns, g and 6g, yielding tang,=n and tan&;=1/n. The transmitted E- and
H-fields may now be written as follows:

E'(r.t) = E; (cos 65 X +nsing,2) exp i (w/c)(xsin G, — zn*cos G, —ct)], (3a)
H'(r.t)=—(E,/Z,) § exp[i (w/c)(xsind, — zn’*cos §,—ct)]. (3b)
c) In the incidence medium, D'(r,t) = ¢,E '(r,t). Therefore, at z=0" we have
D'(x,y,z=0",t) = & E}(cos 6, X +sin 6,2) exp[i (ew/c) (xsin 6, —ct)]. (4)
In the dielectric medium, however, D'(r,t) =&, E'(r,t) = &,n"E'(r,t). Thus at z=0" we have
D'(x,y,z=0",t) = £,n°E; (C0s J X + n"*sin 6, 2) exp i (w/c)(xsin G —ct)]. (5)

Clearly then D!(x,y,z=0",t)=D!(x,y,z=0",t).
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d) Incident beam: <S‘(r,t)>=%Re[E‘(r,t)x H™(r,t)]= 57

(sin G, X —cos ;7). (6)
n|E!|? . .
Transmitted beam: < S'(r,t)> =%Re[E tr,t)x HY(r,t)] = A(sin 0, x—cosd. 7). (7)

0

Note that both Poynting vectors are aligned with their corresponding k-vector. However,
since E; = nE;, the time-averaged Poynting vector of the incident beam is n times greater than
that of the transmitted beam. Nevertheless, the cross-sectional areas of the two beams are in the
ratio of cosé@g/cosdg, which is also equal to n. Therefore, the rate-of-flow of energy per unit time

along the propagation direction is the same for the incident and transmitted beams, as required by
energy conservation.

e) In the absence of free charge, Maxwell’s 1* equation is ¥ - D(r,t) = 0. Since D=¢,E+P and,
by definition, p&  (r,t)=-V-P(r,t), we have ¢V -E(r,t) = p ,(r,t). Thus the discontinuity

bound

of &E; at the z=0 interface is equal to the bound surface-charge-density. Using Egs.(1d) and
(3a) we find

o™™(x,y,2=0,t) = £,[Ey(X, ¥, 2=0",t) - E3(X, Y, 2= 0, 1)]

=¢,(1-n7) E;sin 6, expli(e/c)(xsin g, —ct)]. (8)
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