Solutions

Problem 22) The Fresnel reflection coefficients of Eqs.(17a) and (19a) should be used here in the special case when the incidence medium is glass of refractive index *n*, that is, $\mu_a(\omega) = 1.0$, $\varepsilon_a(\omega) = n^2$, while the transmittance medium is air, that is, $\mu_b(\omega) = \varepsilon_b(\omega) \cong 1.0$. Considering that total internal reflection occurs when $n \sin \theta > 1$, we write

$$\rho_{\rm p} = \frac{n\sqrt{1-n^2\sin^2\theta} - \cos\theta}{n\sqrt{1-n^2\sin^2\theta} + \cos\theta} = -\frac{\cos\theta - in\sqrt{n^2\sin^2\theta - 1}}{\cos\theta + in\sqrt{n^2\sin^2\theta - 1}} = \exp(i\pi) \exp\left[-i2\tan^{-1}\left(\frac{n\sqrt{n^2\sin^2\theta - 1}}{\cos\theta}\right)\right],$$
$$\rho_{\rm s} = \frac{n\cos\theta - i\sqrt{n^2\sin^2\theta - 1}}{n\cos\theta + i\sqrt{n^2\sin^2\theta - 1}} = \exp\left[-i2\tan^{-1}\left(\frac{\sqrt{n^2\sin^2\theta - 1}}{n\cos\theta}\right)\right].$$

The phase difference $\Delta \varphi = \varphi_p - \varphi_s$ between ρ_p and ρ_s is thus given by

$$\Delta \varphi = \pi - 2 \tan^{-1} \left(\frac{n \sqrt{n^2 \sin^2 \theta - 1}}{\cos \theta} \right) + 2 \tan^{-1} \left(\frac{\sqrt{n^2 \sin^2 \theta - 1}}{n \cos \theta} \right).$$

Consequently,

$$\tan\left(\frac{\pi}{2} - \frac{\Delta\varphi}{2}\right) = \tan\left[\tan^{-1}\left(\frac{n\sqrt{n^2\sin^2\theta - 1}}{\cos\theta}\right) - \tan^{-1}\left(\frac{\sqrt{n^2\sin^2\theta - 1}}{n\cos\theta}\right)\right] \checkmark \qquad \text{Trigonometric identity:} \\ \tan(\varphi_1 - \varphi_2) = \frac{\tan\varphi_1 - \tan\varphi_2}{1 + \tan\varphi_1 \tan\varphi_2} \\ = \frac{\left(\frac{n\sqrt{n^2\sin^2\theta - 1}}{\cos\theta}\right) - \left(\frac{\sqrt{n^2\sin^2\theta - 1}}{n\cos\theta}\right)}{1 + \left(\frac{n\sqrt{n^2\sin^2\theta - 1}}{\cos\theta}\right) \left(\frac{\sqrt{n^2\sin^2\theta - 1}}{n\cos\theta}\right)} = \frac{(n^2 - 1)\cos\theta\sqrt{n^2\sin^2\theta - 1}}{n\cos^2\theta + n(n^2\sin^2\theta - 1)} = \frac{\cos\theta\sqrt{n^2\sin^2\theta - 1}}{n\sin^2\theta}.$$

Invoking the identity $\tan\left(\frac{\pi}{2} - \frac{\Delta\varphi}{2}\right) = \cot(\Delta\varphi/2) = 1/\tan(\Delta\varphi/2)$, we finally arrive at $\tan(\Delta\varphi/2) = \frac{n\sin^2\theta}{\cos\theta\sqrt{n^2\sin^2\theta - 1}}$.

Note: Occasionally, the inverse of the above formula appears in the literature, the reason being that the authors have defined ρ_p with a minus sign in front, thus eliminating π from the phase φ_p of ρ_p .

As θ rises beyond the critical TIR angle $\theta_c = \sin^{-1}(1/n)$ to grazing incidence at $\theta = 90^\circ$, $\Delta \varphi$ drops from an initial value of 180° to a minimum, then rises again to 180°. The minimum is found by setting the derivative with respect to θ of the above function equal to zero, that is,

$$\frac{\mathrm{d}}{\mathrm{d}\theta} \tan(\Delta \varphi/2) = 0 \quad \rightarrow \quad \cos^2 \theta_{\min} = n^2 \sin^2 \theta_{\min} - 1 \quad \rightarrow \quad \tan^2 \theta_{\min} = \frac{2}{n^2 - 1}$$

The minimum $\Delta \varphi$ thus occurs at the incidence angle $\theta_{\min} = \tan^{-1} \sqrt{2/(n^2 - 1)}$, where $\tan(\Delta \varphi_{\min}/2) = 2n/(n^2 - 1)$.

For n = 1.5, we find $\theta_{\min} = 51.67^{\circ}$ and $\Delta \varphi_{\min} = 134.76^{\circ}$; therefore, a $\Delta \varphi$ of 45° is not feasible. However, $\Delta \varphi = 135^{\circ}$ is just as good a choice for the Fresnel rhomb, and this may be achieved with two incidence angles on either side of θ_{\min} , namely, $\theta_1 = 53.25^{\circ}$ and $\theta_2 = 50.23^{\circ}$. Either of these incidence angles will result, upon total internal reflection, in a phase-shift of $\Delta \varphi = \varphi_p - \varphi_s = 135^{\circ}$. When two successive reflections occur at the same angle θ , the overall phase shift will be cumulative, i.e., $\Delta \varphi_{\text{total}} = 270^{\circ}$, which is the same as $\Delta \varphi_{\text{total}} = -90^{\circ}$. The Table below lists the overall phase shift for three different values of n at either θ_1 or θ_2 .

	$\Delta \varphi_{\rm total} = 2(\varphi_{\rm p} - \varphi_{\rm s})$		
$\theta_{ m inc}$	(n = 1.47)	(n = 1.5)	(n = 1.52)
53.25°	273.87°	270°	267.66°
50.23°	275.30°	270°	266.86°

Clearly, for $\theta_1 = 53.25^\circ$ the range of variation of $\Delta \varphi_{\text{total}}$ is smaller than that for $\theta_2 = 50.23^\circ$. The better choice for the Fresnel rhomb, therefore, is $\theta_1 = 53.25^\circ$.