Problem 15) a) Snell's law: $k_x^{(i)} = k_x^{(t)}$. Below, both $k_x^{(i)}$ and $k_x^{(t)}$ will be written as k_x .

Dispersion relation in free space: $\mathbf{k}^{(i)2} = k_x^{(i)2} + k_z^{(i)2} = (\omega/c)^2$; therefore, $k_z^{(i)} = \pm \sqrt{(\omega/c)^2 - k_x^2}$. Note that, in general, the square root will yield a complex number. Either the plus sign or the minus sign (but not both) should be used for the square root.

Dispersion relation in material medium: $\mathbf{k}^{(t)} = k_x^{(t)} + k_z^{(t)} = (\omega/c)^2 \mu(\omega) \varepsilon(\omega)$. Since $k_x^{(i)} = k_x^{(t)} = k_x$ and $\mu(\omega) = 1$, we will have $k_z^{(t)} = \pm \sqrt{(\omega/c)^2 \varepsilon(\omega) - k_x^2}$. As before, the square root will, in general, yield a complex number. Either the plus sign or the minus sign (but not both) should be used.

b) Maxwell's first equation: $\mathbf{k}^{(i)} \cdot \mathbf{E}_0^{(i)} = 0 \rightarrow k_x^{(i)} E_{x0}^{(i)} + k_z^{(i)} E_{z0}^{(i)} = 0 \rightarrow E_{z0}^{(i)} = -k_x E_{x0}^{(i)} / k_z^{(i)}$. transmitted beam: $\mathbf{k}^{(t)} \cdot \mathbf{E}_0^{(t)} = 0 \rightarrow E_{z_0}^{(t)} = -k_x E_{x_0}^{(t)} / k_z^{(t)}$.

Maxwell's third equation; incident beam:
$$
\mathbf{k}^{(i)} \times \mathbf{E}_0^{(i)} = \mu_0 \omega \mathbf{H}_0^{(i)} \rightarrow H_{x0}^{(i)} = -k_z^{(i)} E_{y0}^{(i)} / (\mu_0 \omega);
$$

\n
$$
H_{y0}^{(i)} = [k_z^{(i)} E_{x0}^{(i)} - k_x E_{z0}^{(i)}]/(\mu_0 \omega) = \varepsilon_0 \omega E_{x0}^{(i)} / k_z^{(i)}; \qquad H_{z0}^{(i)} = k_x E_{y0}^{(i)} / (\mu_0 \omega).
$$

transmitted beam:
$$
\mathbf{k}^{(t)} \times \mathbf{E}_0^{(t)} = \mu_0 \mu(\omega) \omega \mathbf{H}_0^{(t)} \rightarrow H_{xo}^{(t)} = -k_z^{(t)} E_{yo}^{(t)} / (\mu_0 \omega);
$$

\n $H_{yo}^{(t)} = [k_z^{(t)} E_{xo}^{(t)} - k_x E_{zo}^{(t)}]/(\mu_0 \omega) = \varepsilon_0 \varepsilon \omega E_{xo}^{(t)} / k_z^{(t)}; \qquad H_{zo}^{(t)} = k_x E_{yo}^{(t)} / (\mu_0 \omega).$

c) Continuity equations for the tangential E - and H -fields at the $z=0$ interface:

$$
p\text{-polarization:} \quad\n\begin{cases}\nE_{xo}^{(i)} = E_{xo}^{(t)} \\
H_{yo}^{(i)} = H_{yo}^{(t)} \rightarrow \varepsilon_0 \omega E_{xo}^{(i)} / k_z^{(i)} = \varepsilon_0 \varepsilon \omega E_{xo}^{(t)} / k_z^{(t)} \rightarrow k_z^{(t)} = \varepsilon(\omega) k_z^{(i)}.\n\end{cases}
$$
\n
$$
s\text{-polarization:} \quad\n\begin{cases}\nE_{yo}^{(i)} = E_{yo}^{(t)} \\
H_{xo}^{(i)} = H_{xo}^{(t)} \rightarrow k_z^{(t)} = k_z^{(i)}.\n\end{cases}
$$

d) For the case of *p*-polarization, satisfying the boundary conditions *without* a reflected wave requires that $k_z^{(t)} = \varepsilon(\omega) k_z^{(i)}$. Substituting in this equation the expressions for $k_z^{(i)}$ and $k_z^{(t)}$ obtained in part (a), we find

$$
(\omega/c)^2 \varepsilon(\omega) - k_x^2 = \varepsilon^2(\omega) [(\omega/c)^2 - k_x^2] \rightarrow k_x = \pm (\omega/c) \sqrt{\varepsilon(\omega)/[1 + \varepsilon(\omega)]}.
$$

For the case of *s*-polarization, the boundary conditions in the absence of a reflected wave will be satisfied only when $k_z^{(i)} = k_z^{(t)}$, which is *impossible* so long as $\varepsilon(\omega) \neq 1$.

e) **Case i**: $\varepsilon' > 0$, $\varepsilon'' = 0$. Here $\varepsilon' = n^2$, where *n* is the real-valued, positive refractive index of the material medium. When the reflection coefficient for *p*-polarized light vanishes, we will have $k_x = \pm(\omega/c)\sqrt{n^2/(1+n^2)} = \pm(\omega/c)\sin\theta_B$ where $\theta_B = \tan^{-1}n$ is the Brewster angle. Substituting for k_x in the expressions for $k_z^{(i)}$ and $k_z^{(t)}$, we find $k_z^{(i)} = -(\omega/c)\cos\theta_B$ and $k_z^{(t)} = -(n^2 \omega/c) \cos \theta_B$. Both the incident and transmitted plane-waves are thus homogeneous; they propagate downward, along the negative *z*-axis, and satisfy the condition $k_z^{(t)} = \varepsilon(\omega) k_z^{(i)}$ obtained in part (c) for *p*-polarized light.

- **Case ii**: $\varepsilon' < -1$, $\varepsilon'' = 0$. When the reflection coefficient for *p*-polarized light vanishes, we will have $k_x = \pm(\omega/c)\sqrt{|\varepsilon'|/(|\varepsilon'|-1)}$, which is a real-valued number with a magnitude greater than ω/c . Substitution for k_x in the expressions for $k_z^{(i)}$ and $k_z^{(t)}$ yields $k_z^{(i)} = i(\omega/c)/\sqrt{|\varepsilon'|-1}$ and $k_z^{(t)} = -i(\omega/c)|\varepsilon'/\sqrt{|\varepsilon'|-1}$. Both the incident and transmitted waves are thus *evanescent*, with real-valued k_x and imaginary k_z ; they attenuate away from the interface along the $\pm z$ -axis, and satisfy the required condition $k_z^{(t)} = \varepsilon(\omega) k_z^{(i)}$ obtained for *p*-polarized light in part (c). The time-averaged Poynting vector $\langle S \rangle = \frac{1}{2}$ Real($E \times H^*$) can be readily calculated from the (E_x, E_z, H_y) fields given in part (b). The energy is seen to flow along k_x in the free space, and along $-k_x$ inside the medium. On both sides of the interface, the time-averaged energy flux along the *z*-axis is zero. This excited surface-wave, residing partly in the free space and partly in the material medium, is known as a *surface plasmon polariton*.
- **Case iii**: $\varepsilon' < 0$, $\varepsilon'' > 0$. In this case $k_x = \pm(\omega/c)\sqrt{(\varepsilon' + i \varepsilon'')/((1 + \varepsilon' + i \varepsilon'')})}$ is complex-valued. Substitution for k_x in the expressions for $k_z^{(i)}$ and $k_z^{(t)}$ yields $k_z^{(i)} = (\omega/c)(1 + \varepsilon' + i\varepsilon'')^{-1/2}$ and $k_z^{(t)} = (\omega/c)(\epsilon' + i\epsilon'') (1 + \epsilon' + i\epsilon'')^{-1/2}$. The complex square root $(1 + \epsilon' + i\epsilon'')^{-1/2}$ is chosen to give $k_z^{(i)}$ a *positive* imaginary part. Note that our choice of signs for $k_z^{(i)}$ and $k_z^{(t)}$ satisfies the required condition $k_z^{(t)} = \varepsilon(\omega) k_z^{(i)}$ obtained in part (c). We must prove that the imaginary parts of $k_z^{(i)}$ and $k_z^{(t)}$ always have opposite signs. To this end, note that $(1+\varepsilon)^{-1/2} + \varepsilon (1+\varepsilon)^{-1/2} = (1+\varepsilon)^{1/2}$; therefore, $\varepsilon (1+\varepsilon)^{-1/2} = (1+\varepsilon)^{-1/2} - (1+\varepsilon)^{-1/2}$. From the complex-plane diagram below it must be clear that, for *any* complex number α , the imaginary parts of α –(1/ α) and (1/ α) always have opposite signs, which completes the proof. The *evanescent* plane-wave in the

free space region decays exponentially along the imaginary part of $k_x^{(i)} \hat{\mathbf{x}} + k_z^{(i)} \hat{\mathbf{z}}$, which points away from the interface. The *inhomogeneous* plane-wave in the material medium also decays exponentially away from the interface, this one along the imaginary part of $k_x^{(t)} \hat{\mathbf{x}} + k_z^{(t)} \hat{\mathbf{z}}$.

Typical metals at optical frequencies have large negative values of ε' in addition to small positive values of ε ". For these, the *surface plasmon polariton* wave will have a k_x value slightly greater than unity (in magnitude), with a small imaginary component. The evanescent wave in the free space decays rather slowly along the *z*-axis, whereas the inhomogeneous

wave in the metal decays quite rapidly away from the interface. The plasmonic wave is thus confined to a thin layer at the surface of the metallic medium. The time-averaged Poynting vector $\langle S \rangle = \frac{1}{2}$ Real($E \times H^*$) can be readily calculated from the (E_x, E_z, H_y) fields given in part (b). The horizontal energy flux, $\langle S_x \rangle$, is seen to be along Real(k_x) in the free space, and along $Real(-k_x)$ inside the medium. On both sides of the interface, vertical energy flux, $\langle S_z \rangle$, is downward, i.e., points along the negative *z*axis. Such plasmonic waves are generally long-range, because ε'' is fairly small and the losses are confined to an exceedingly thin layer at the surface of the metallic medium.

Case iv: $\varepsilon' > 0$, $\varepsilon'' > 0$. This case is similar to case (iii), with the following exceptions: The magnitude of k_x is generally *less* than unity, with an imaginary part that may be large or small, depending on the relative values of ε' and ε'' . For a low-loss medium, where ε'' is fairly small, the exponential decay of the wave inside the medium (away from the interface) is rather slow, resulting in a large penetration depth. The horizontal energy flux, $\langle S_x \rangle$, is in the direction of Real(k_x), both in the free space region and inside the material medium. The vertical energy flux, $\langle S_z \rangle$, always pointing along the negative *z*axis, is large, irrespective of whether ε'' is large or small. The wave is thus very different from a *surface plasmon polariton*, despite similarities in their mathematical structure. When integrated over the penetration depth, the lost energy will be substantial, even for small values of ε ". Therefore, a *p*-polarized wave-packet comprising an evanescent plane-wave in the free space region and an inhomogeneous plane-wave in a medium having $\varepsilon' > 0$, $\varepsilon'' > 0$, cannot behave similarly to a long-range surface wave; too much energy is dissipated within its penetration depth, and not enough energy is transported parallel to the surface of the medium.