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Opti 501 Solutions 
 
Problem 15)    a) Snell’s law: kx

(i) =kx
(t). Below, both kx

(i) and kx
(t) will be written as kx.  

Dispersion relation in free space: k(i)2 = kx
(i)2 + kz

(i)2 = (ω/c)2; therefore, kz
(i) = ±√ (ω /c)2 −kx

2. Note 
that, in general, the square root will yield a complex number. Either the plus sign or the minus 
sign (but not both) should be used for the square root. 

Dispersion relation in material medium: k(t)2 = kx
(t)2 + kz

(t)2 = (ω/c)2μ(ω)ε (ω). Since kx
(i) =kx

(t) = kx  
and μ(ω) = 1, we will have kz

(t) = ±√ (ω /c)2ε (ω) −kx
2. As before, the square root will, in general, 

yield a complex number. Either the plus sign or the minus sign (but not both) should be used. 

b) Maxwell’s first equation: k(i) ⋅Eo
(i) = 0 → kx

(i)Exo
(i) + kz

(i)Ezo
(i) = 0 → Ezo

(i) = −kxExo
(i)/kz

(i). 

 transmitted beam: k(t) ⋅Eo
(t) = 0 → Ezo

(t) = −kxExo
(t)/kz

(t).  

 Maxwell’s third equation; incident beam: k(i)×Eo
(i) = μoω Ho

(i) → Hxo
(i) = − kz

(i)Eyo
(i)/(μoω); 

 Hyo
(i) = [kz

(i)Exo
(i)− kxEzo

(i)]/(μoω) =εoω Exo
(i) /kz

(i);        Hzo
(i) = kxEyo

(i)/(μoω). 

 transmitted beam: k(t)×Eo
(t) = μoμ(ω)ω Ho

(t)  → Hxo
(t) = − kz

(t)Eyo
(t)/(μoω); 

 Hyo
(t) = [kz

(t)Exo
(t)− kxEzo

(t)]/(μoω) =εoε ω Exo
(t) /kz

(t);     Hzo
(t) = kxEyo

(t)/(μoω). 

c) Continuity equations for the tangential E- and H-fields at the z = 0 interface: 

 p-polarization: Exo
(i) = Exo

(t) 

 Hyo
(i) = Hyo

(t) →  εoω Exo
(i) /kz

(i) =εoε ω Exo
(t)/kz

(t)  →  kz
(t) = ε (ω)kz

(i). 

 s-polarization : Eyo
(i) = Eyo

(t) 

 Hxo
(i) = Hxo

(t)   →  kz
(t) = kz

(i). 

d) For the case of p-polarization, satisfying the boundary conditions without a reflected wave 
requires that kz

(t) = ε (ω)kz
(i). Substituting in this equation the expressions for kz

(i) and kz
(t) 

obtained in part (a), we find 

 (ω /c)2ε (ω) −kx
2 = ε 2(ω)[(ω /c)2 − kx

2]  →  kx = ±(ω /c)√ ε (ω)/[1+ε (ω)]. 
 

For the case of s-polarization, the boundary conditions in the absence of a reflected wave 
will be satisfied only when kz

(i) = kz
(t), which is impossible so long as ε (ω) ≠ 1. 

e) Case i: ε ′ > 0, ε ″= 0. Here ε ′= n2, where n is the real-valued, positive refractive index of the 
material medium. When the reflection coefficient for p-polarized light vanishes, we 
will have kx = ±(ω /c)√ n2/(1+n2) = ±(ω /c)sinθB where θB = tan−1n is the Brewster 
angle. Substituting for kx in the expressions for kz

(i) and kz
(t), we find kz

(i) = −(ω /c)cosθB 
and kz

(t) = −(n2ω /c)cosθB. Both the incident and transmitted plane-waves are thus 
homogeneous; they propagate downward, along the negative z-axis, and satisfy the 
condition kz

(t) = ε (ω)kz
(i) obtained in part (c) for p-polarized light. 

1/3



 2

Case ii: ε ′ < −1, ε ″= 0. When the reflection coefficient for p-polarized light vanishes, we will 
have kx = ±(ω /c)√ |ε ′| / (|ε ′| −1), which is a real-valued number with a magnitude greater 
than ω /c. Substitution for kx in the expressions for kz

(i) and kz
(t) yields 

kz
(i) = i(ω /c)/√ |ε ′| −1 and kz

(t) = − i(ω /c)|ε ′| /√ |ε ′| −1. Both the incident and transmitted 
waves are thus evanescent, with real-valued kx and imaginary kz; they attenuate away 
from the interface along the ±z-axis, and satisfy the required condition kz

(t) = ε (ω)kz
(i) 

obtained for p-polarized light in part (c). The time-averaged Poynting vector 
<S> = ½Real(E×H*) can be readily calculated from the (Ex, Ez, Hy) fields given in part 
(b). The energy is seen to flow along kx in the free space, and along –kx inside the 
medium. On both sides of the interface, the time-averaged energy flux along the z-axis 
is zero. This excited surface-wave, residing partly in the free space and partly in the 
material medium, is known as a surface plasmon polariton. 

Case iii: ε ′ < 0, ε ″> 0. In this case kx = ±(ω /c)√ (ε ′+iε ″)/(1+ε ′+iε ″) is complex-valued. 
Substitution for kx in the expressions for kz

(i) and kz
(t) yields kz

(i) = (ω /c)(1+ε ′+iε ″)−½ 
and kz

(t) = (ω /c)(ε ′+ iε ″)(1+ε ′+iε ″)−½. The complex square root (1+ε ′+iε ″)−½ is 
chosen to give kz

(i) a positive imaginary part. Note that our choice of signs for kz
(i) and 

kz
(t) satisfies the required condition kz

(t) = ε (ω)kz
(i) obtained in part (c). We must prove 

that the imaginary parts of kz
(i) and kz

(t) always have opposite signs. To this end, note 
that (1+ε )−½ +ε (1+ε )−½ = (1+ε )½; therefore, ε (1+ε )−½ = (1+ε )½ − (1+ε )−½. From the 
complex-plane diagram below it must be clear that, for any complex number α , the 
imaginary parts of α −(1/α) and (1/α) always have opposite signs, which completes 
the proof. The evanescent plane-wave in the 
free space region decays exponentially along 
the imaginary part of kx

(i)x^ + kz
(i)z^ , which points 

away from the interface. The inhomogeneous 
plane-wave in the material medium also decays 
exponentially away from the interface, this one 
along the imaginary part of kx

(t)x^ + kz
(t)z^ . 

Typical metals at optical frequencies have 
large negative values of ε ′ in addition to small 
positive values of ε ″. For these, the surface 
plasmon polariton wave will have a kx value 
slightly greater than unity (in magnitude), with 
a small imaginary component. The evanescent 
wave in the free space decays rather slowly 
along the z-axis, whereas the inhomogeneous 
wave in the metal decays quite rapidly away from the interface. The plasmonic wave is 
thus confined to a thin layer at the surface of the metallic medium. The time-averaged 
Poynting vector <S> = ½Real(E×H*) can be readily calculated from the (Ex, Ez, Hy) 
fields given in part (b). The horizontal energy flux, <Sx >, is seen to be along Real(kx) 
in the free space, and along Real(–kx) inside the medium. On both sides of the 
interface, vertical energy flux, <Sz >, is downward, i.e., points along the negative z-
axis. Such plasmonic waves are generally long-range, because ε ″ is fairly small and the 
losses are confined to an exceedingly thin layer at the surface of the metallic medium. 

α 

1/α 

−1/α 

α −(1/α)

Real

Imaginary 
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Case iv: ε ′ > 0, ε ″> 0. This case is similar to case (iii), with the following exceptions: The 
magnitude of kx is generally less than unity, with an imaginary part that may be large or 
small, depending on the relative values of ε ′ and ε ″. For a low-loss medium, where ε″ 
is fairly small, the exponential decay of the wave inside the medium (away from the 
interface) is rather slow, resulting in a large penetration depth. The horizontal energy 
flux, <Sx >, is in the direction of Real(kx), both in the free space region and inside the 
material medium. The vertical energy flux, <Sz >, always pointing along the negative z-
axis, is large, irrespective of whether ε ″ is large or small. The wave is thus very 
different from a surface plasmon polariton, despite similarities in their mathematical 
structure. When integrated over the penetration depth, the lost energy will be 
substantial, even for small values of ε ″. Therefore, a p-polarized wave-packet 
comprising an evanescent plane-wave in the free space region and an inhomogeneous 
plane-wave in a medium having ε ′ > 0, ε ″> 0, cannot behave similarly to a long-range 
surface wave; too much energy is dissipated within its penetration depth, and not 
enough energy is transported parallel to the surface of the medium. 
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