Problem 15) a) Snell's law: $k_x^{(i)} = k_x^{(t)}$. Below, both $k_x^{(i)}$ and $k_x^{(t)}$ will be written as k_x .

Dispersion relation in free space: $\mathbf{k}^{(i)2} = k_x^{(i)2} + k_z^{(i)2} = (\omega/c)^2$; therefore, $k_z^{(i)} = \pm \sqrt{(\omega/c)^2 - k_x^2}$. Note that, in general, the square root will yield a complex number. Either the plus sign or the minus sign (but not both) should be used for the square root.

Dispersion relation in material medium: $\mathbf{k}^{(t)^2} = k_x^{(t)^2} + k_z^{(t)^2} = (\omega/c)^2 \mu(\omega)\varepsilon(\omega)$. Since $k_x^{(i)} = k_x^{(t)} = k_x$ and $\mu(\omega) = 1$, we will have $k_z^{(t)} = \pm \sqrt{(\omega/c)^2 \varepsilon(\omega) - k_x^2}$. As before, the square root will, in general, yield a complex number. Either the plus sign or the minus sign (but not both) should be used.

b) Maxwell's first equation: $\mathbf{k}^{(i)} \cdot \mathbf{E}_{0}^{(i)} = 0 \rightarrow k_{x}^{(i)} E_{x0}^{(i)} + k_{z}^{(i)} E_{z0}^{(i)} = 0 \rightarrow E_{z0}^{(i)} = -k_{x} E_{x0}^{(i)} / k_{z}^{(i)}$. transmitted beam: $\mathbf{k}^{(t)} \cdot \mathbf{E}_{0}^{(t)} = 0 \rightarrow E_{z0}^{(t)} = -k_{x} E_{x0}^{(t)} / k_{z}^{(t)}$.

Maxwell's third equation; incident beam:
$$\mathbf{k}^{(i)} \times \mathbf{E}_{o}^{(i)} = \mu_{o} \omega \mathbf{H}_{o}^{(i)} \rightarrow H_{xo}^{(i)} = -k_{z}^{(i)} E_{yo}^{(i)} / (\mu_{o} \omega)$$

 $H_{yo}^{(i)} = [k_{z}^{(i)} E_{xo}^{(i)} - k_{x} E_{zo}^{(i)}] / (\mu_{o} \omega) = \varepsilon_{o} \omega E_{xo}^{(i)} / k_{z}^{(i)}; \qquad H_{zo}^{(i)} = k_{x} E_{yo}^{(i)} / (\mu_{o} \omega).$

transmitted beam:
$$\mathbf{k}^{(t)} \times \mathbf{E}_{o}^{(t)} = \mu_{o} \mu(\omega) \omega \mathbf{H}_{o}^{(t)} \rightarrow H_{xo}^{(t)} = -k_{z}^{(t)} E_{yo}^{(t)} / (\mu_{o} \omega);$$

 $H_{yo}^{(t)} = [k_{z}^{(t)} E_{xo}^{(t)} - k_{x} E_{zo}^{(t)}] / (\mu_{o} \omega) = \varepsilon_{o} \varepsilon \omega E_{xo}^{(t)} / k_{z}^{(t)}; \quad H_{zo}^{(t)} = k_{x} E_{yo}^{(t)} / (\mu_{o} \omega).$

c) Continuity equations for the tangential *E*- and *H*-fields at the z=0 interface:

$$p\text{-polarization:} \begin{cases} E_{xo}^{(i)} = E_{xo}^{(t)} \\ H_{yo}^{(i)} = H_{yo}^{(t)} \rightarrow \varepsilon_{0} \omega E_{xo}^{(i)} / k_{z}^{(i)} = \varepsilon_{0} \varepsilon \omega E_{xo}^{(t)} / k_{z}^{(t)} \rightarrow k_{z}^{(t)} = \varepsilon(\omega) k_{z}^{(i)}. \end{cases}$$

$$s\text{-polarization:} \begin{cases} E_{yo}^{(i)} = E_{yo}^{(t)} \\ H_{xo}^{(i)} = H_{xo}^{(t)} \rightarrow k_{z}^{(t)} = k_{z}^{(i)}. \end{cases}$$

d) For the case of *p*-polarization, satisfying the boundary conditions *without* a reflected wave requires that $k_z^{(t)} = \varepsilon(\omega) k_z^{(i)}$. Substituting in this equation the expressions for $k_z^{(i)}$ and $k_z^{(t)}$ obtained in part (a), we find

$$(\omega/c)^2 \varepsilon(\omega) - k_x^2 = \varepsilon^2(\omega) [(\omega/c)^2 - k_x^2] \rightarrow k_x = \pm (\omega/c) \sqrt{\varepsilon(\omega)/[1 + \varepsilon(\omega)]}.$$

For the case of *s*-polarization, the boundary conditions in the absence of a reflected wave will be satisfied only when $k_z^{(i)} = k_z^{(t)}$, which is *impossible* so long as $\varepsilon(\omega) \neq 1$.

e) **Case i**: $\varepsilon' > 0$, $\varepsilon'' = 0$. Here $\varepsilon' = n^2$, where *n* is the real-valued, positive refractive index of the material medium. When the reflection coefficient for *p*-polarized light vanishes, we will have $k_x = \pm (\omega/c)\sqrt{n^2/(1+n^2)} = \pm (\omega/c)\sin\theta_B$ where $\theta_B = \tan^{-1}n$ is the Brewster angle. Substituting for k_x in the expressions for $k_z^{(i)}$ and $k_z^{(i)}$, we find $k_z^{(i)} = -(\omega/c)\cos\theta_B$ and $k_z^{(i)} = -(n^2\omega/c)\cos\theta_B$. Both the incident and transmitted plane-waves are thus homogeneous; they propagate downward, along the negative *z*-axis, and satisfy the condition $k_z^{(i)} = \varepsilon(\omega)k_z^{(i)}$ obtained in part (c) for *p*-polarized light.

- **Case ii**: $\varepsilon' < -1$, $\varepsilon''=0$. When the reflection coefficient for *p*-polarized light vanishes, we will have $k_x = \pm(\omega/c)\sqrt{|\varepsilon'|/(|\varepsilon'|-1)}$, which is a real-valued number with a magnitude greater than ω/c . Substitution for k_x in the expressions for $k_z^{(i)}$ and $k_z^{(t)}$ yields $k_z^{(i)} = i(\omega/c)/\sqrt{|\varepsilon'|-1}$ and $k_z^{(t)} = -i(\omega/c)|\varepsilon'|/\sqrt{|\varepsilon'|-1}$. Both the incident and transmitted waves are thus *evanescent*, with real-valued k_x and imaginary k_z ; they attenuate away from the interface along the $\pm z$ -axis, and satisfy the required condition $k_z^{(t)} = \varepsilon(\omega)k_z^{(i)}$ obtained for *p*-polarized light in part (c). The time-averaged Poynting vector $\langle S \rangle = \frac{1}{2} P \exp[(E \times H^*)]$ can be readily calculated from the $\langle E E H \rangle$ fields given in part
 - $\langle S \rangle = \frac{1}{2} \operatorname{Real}(E \times H^*)$ can be readily calculated from the (E_x, E_z, H_y) fields given in part (b). The energy is seen to flow along k_x in the free space, and along $-k_x$ inside the medium. On both sides of the interface, the time-averaged energy flux along the z-axis is zero. This excited surface-wave, residing partly in the free space and partly in the material medium, is known as a *surface plasmon polariton*.
- **Case iii**: $\varepsilon' < 0$, $\varepsilon'' > 0$. In this case $k_x = \pm (\omega/c) \sqrt{(\varepsilon' + i\varepsilon'')/(1 + \varepsilon' + i\varepsilon'')}$ is complex-valued. Substitution for k_x in the expressions for $k_z^{(i)}$ and $k_z^{(t)}$ yields $k_z^{(i)} = (\omega/c)(1 + \varepsilon' + i\varepsilon'')^{-\frac{1}{2}}$ and $k_z^{(t)} = (\omega/c)(\varepsilon' + i\varepsilon'')(1 + \varepsilon' + i\varepsilon'')^{-\frac{1}{2}}$. The complex square root $(1 + \varepsilon' + i\varepsilon'')^{-\frac{1}{2}}$ is chosen to give $k_z^{(i)}$ a *positive* imaginary part. Note that our choice of signs for $k_z^{(i)}$ and $k_z^{(t)}$ satisfies the required condition $k_z^{(t)} = \varepsilon(\omega)k_z^{(i)}$ obtained in part (c). We must prove that the imaginary parts of $k_z^{(i)}$ and $k_z^{(t)}$ always have opposite signs. To this end, note that $(1 + \varepsilon)^{-\frac{1}{2}} + \varepsilon(1 + \varepsilon)^{-\frac{1}{2}} = (1 + \varepsilon)^{\frac{1}{2}}$; therefore, $\varepsilon(1 + \varepsilon)^{-\frac{1}{2}} = (1 + \varepsilon)^{\frac{1}{2}} - (1 + \varepsilon)^{-\frac{1}{2}}$. From the complex-plane diagram below it must be clear that, for *any* complex number α , the imaginary parts of $\alpha - (1/\alpha)$ and $(1/\alpha)$ always have opposite signs, which completes the proof. The *evanescent* plane-wave in the

free space region decays exponentially along the imaginary part of $k_x^{(i)}\hat{x} + k_z^{(i)}\hat{z}$, which points away from the interface. The *inhomogeneous* plane-wave in the material medium also decays exponentially away from the interface, this one along the imaginary part of $k_x^{(t)}\hat{x} + k_z^{(t)}\hat{z}$.

Typical metals at optical frequencies have large negative values of ε' in addition to small positive values of ε'' . For these, the *surface plasmon polariton* wave will have a k_x value slightly greater than unity (in magnitude), with a small imaginary component. The evanescent wave in the free space decays rather slowly along the *z*-axis, whereas the inhomogeneous

wave in the metal decays quite rapidly away from the interface. The plasmonic wave is thus confined to a thin layer at the surface of the metallic medium. The time-averaged Poynting vector $\langle S \rangle = \frac{1}{2} \operatorname{Real}(E \times H^*)$ can be readily calculated from the (E_x, E_z, H_y) fields given in part (b). The horizontal energy flux, $\langle S_x \rangle$, is seen to be along Real (k_x) in the free space, and along Real $(-k_x)$ inside the medium. On both sides of the interface, vertical energy flux, $\langle S_z \rangle$, is downward, i.e., points along the negative *z*axis. Such plasmonic waves are generally long-range, because ε'' is fairly small and the losses are confined to an exceedingly thin layer at the surface of the metallic medium. **Case iv**: $\varepsilon' > 0$, $\varepsilon'' > 0$. This case is similar to case (iii), with the following exceptions: The magnitude of k_x is generally *less* than unity, with an imaginary part that may be large or small, depending on the relative values of ε' and ε'' . For a low-loss medium, where ε'' is fairly small, the exponential decay of the wave inside the medium (away from the interface) is rather slow, resulting in a large penetration depth. The horizontal energy flux, $\langle S_x \rangle$, is in the direction of Real (k_x) , both in the free space region and inside the material medium. The vertical energy flux, $\langle S_z \rangle$, always pointing along the negative *z*-axis, is large, irrespective of whether ε'' is large or small. The wave is thus very different from a *surface plasmon polariton*, despite similarities in their mathematical structure. When integrated over the penetration depth, the lost energy will be substantial, even for small values of ε'' . Therefore, a *p*-polarized wave-packet comprising an evanescent plane-wave in the free space region and an inhomogeneous plane-wave in a medium having $\varepsilon' > 0$, $\varepsilon'' > 0$, cannot behave similarly to a long-range surface wave; too much energy is dissipated within its penetration depth, and not enough energy is transported parallel to the surface of the medium.