Opti 501 Solutions

Problem 14) a) Using the dispersion relation, k*=k+ k= (w/c)’u(w) £(w), and the fact that
the x-component of K is given by k= (@/C)n(®)sinf, we write

ke=V(/C)" n(w) ks = (w/C)N()cos. (1)
Maxwell’s 1% equation: K;-E1=0 — kyEx + k:E;1 =0 — E;= —Kk(Ex/k; — E;=—(tan8)Ey;.
Similarly, k»-E;=0 — Ex= (tan@ ) Ex. (2)

Maxwell’s 3 equation: ki xE =, u(@)oH; — Hy = —kKEy1/(o@) — Hy=-N(@)Ey cosb/Z;
Hyi = (k:Ex —KxEz)/ (o) =n(@) Exi/(Zocos0);  Ha=kxEyi1/(1o@)=n(w)Eysinb/Z,. (3a)
Similarly, Hy=n(@)EpcosO/Z,;  Hyp=—n(@)Ex/(Z,cos0); Hx=n(w)Eypsind/Z,. (3b)

b) Setting Exx,=E,; and Ey,=Ey; for an even mode, the superposition of the two plane-waves
produces the following fields throughout the waveguide:

E(r,t)=Real {E, exp[i(k;-r— ot)]+ Eexp[i(ky r— wt)]}
=Real {[E, exp(ik;2) + Esexp(—ik;2)]exp[i(keX— wt)]}
=Real {{Ex[exp(ik,2)+exp(-ik;2)]X + Eyi[exp(ik.2) + exp(=ik;2)] ¥
—tan @ Exi[exp(ik,2)—exp(—ik,2)]2 } exp[i(kex— ot)] }

= 2 Ex cos(k;2) cos (kX — mt) X+2 Eyicos(kz2)cos(kex— a)t))A/ +2tan @ Ey; sin(K;2) sin(kyX — ot) Z.

(4a)
H(r,t)=Real {H; exp[i(k;-r— wt)]+ Hyexp[i(ky r— wt)]}
=2Z,"'n(w)[EyicosOsin(k;2) sin(kex— ot) X —(Ex/cos 0) sin(k,2) sin (kX — wt)y
+Ey15in8 cos(K.2) cos (kX — mt) 2] (4b)

c) At the surface of the conductor, there cannot be any tangential E- or perpendicular B-fields,
which means that Ex=E,=H,=0 at z=+d/2. This is possible only when cos(£)2k,d)=0, that is,

Y(wd/c)n(w)cos@ =(M+Y%)7r — cosOn=(Mm+%)A,/[n(w)d], (5)

where the vacuum wavelength, 4,=27C/®@, has been used. The mode can exist when cosé <I.
The smallest possible value of the integer m being zero, it is necessary to have d>'4,/N(®) to
ensure the existence of at least one even mode. The even mode is said to be “cut-off” when the
slab thickness d happens to be below “24,/n(®). For single mode operation, d must be in the
following range:

Y e/N(@) <d <>hA/N(w). (6)

With regard to the polarization state of the guided mode, two possibilities exist:
i) p-polarized mode (also called transverse magnetic, TM, mode): Ex;#0, Ey;=0.
ii) s-polarized mode (also called transverse electric, TE, mode): E,;=0, Ey; #0.
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In the case of even modes currently under consideration, the preceding statements with regard to
cut-off and single-mode operation apply to both TE and TM modes.

d) According to Maxwell’s 1% equation, V-D =p%e., the surface charge density is equal to the
perpendicular D-field, & £E,, at the surface of a perfect conductor. We thus have:

m™" p-polarized even mode:
o(X, z=d/2,t) = —& eE,(x, z=d/2,t) = 2(=1) ™ g, n*(@) tan Oy Er sin(k ™ X—wt).  (7a)

m™ s-polarized even mode:
os(X,z=d/2,1)=0. (7b)

Also, according to Maxwell’s ond equation, VxH =Jg..+D/ot, the surface current density of a
perfect conductor is equal but perpendicular to the tangential magnetic field, H. Therefore,

m™" p-polarized even mode:
I, z=d/2,t) = Hy(x, z=d/2, )X =2(=1)™'n(0) (Exi/Z,cos b sin(kx—wt)X.  (8a)
m™ s-polarized even mode:
JoX, 2= d/2, 1) = —Hy(X, 2= d/2, )y =2(=1)™'n(@) (Ey1/Zo) cos bsin(k ™ x— wt)y.  (8b)
It may be readily verified that the above distributions satisfy the charge-current continuity
equation, V-Jst+Jdoy/dt=0.
e) Setting Ex=—Ex and Ey,=—Ey; for an odd mode, the superposition of the two plane-waves
produces the following fields throughout the waveguide:
E(r,t)y=Real {E,exp[i(k;-r— wt)] +Ezexp[i(ky r— wt)]}
= Real {{Ex[exp(ik.2)—exp(—ik.2)]X + Eyi[exp(ik,2) —exp(~ik;2)]y
—tan @ Ex[exp(ik.2) +exp(—ik,2)]Z } expli(kexX—ot)] }
= -2 [Eq sin(k.2) sin(keX— wt) X + E,1 sin(k;2) sin(keX— wt)y +tan @ Ex cos(K,2) cos (kX — wt) 2]

(9a)
H(r,t)=Real {H; exp[i(k;-r— wt)]+ Hayexp[i(ky r— wt)]}
==2 Zo_ln(a))[Eyl cos @ cos(kz2) cos (kyX— wt) X —(Exi/cosO)cos(k,2)cos(keX— a)t))A/
+ Eyysin@ sin(k;2) sin (kX — ot) 7). (9b)

At the conductors’ surfaces, z=£d/2, where Ex=E,=H,=0, we must have sin(t/2k.d)=0, i.e.,
Y(wd/c)n(w)cos@=mr —  cosbn=ml,/[n(w)d]. (10)

In this case the lowest-order mode, corresponding to m=0, obtains when 6,=90°. However, we
now have k= (@/C)N(®w) and k,=0. Under these circumstances, in accordance with Egs.(9a) and
(9b), Ex, Ey, Hy, and H; will identically vanish throughout the slab. The only surviving fields are
E; and Hy, which go to infinity unless one recognizes that, by allowing Ey to approach zero when
0 —90°, E; and Hy could attain finite values, namely,

E(r,t) = Ezcos(k"x— wt)Z; (Mm=0), (11a)
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H(r,t) = —n(@)(E»/Z) cos (kX — wt)y; (M=0). (11b)

This p-polarized (TM) mode always exists, no matter how thin the slab may be. Taking note of
the fact that cos@n<1 for any value of m, the condition for p-polarized single-mode operation in
the m=0 guided mode is d <A,/n(w).

For odd modes that are s-polarized (TE), the first possibility for propagation is m=1, in
which case single-mode operation occurs when A,/nN(w) <d <2A,/n(w). The cut-off for odd TE

modes occurs below d =/1,/n(w).
At the surface of the upper conductor which is in contact with the dielectric slab, surface

charge and current densities for odd modes are found to be:

m™ odd p-polarized mode (m=0):

oo(X, 2= 0/2,1) = —& eEx(X, z=d/2, 1) = 2(~1) &, N*(@) tan G Ex cos (kX — o), (12a)

JoX, z=d/2, 1) = Hy(x, z= d/2, )X =2(=1)™n(@) (Ex1/Zoc0s ) cos (k"X — ot) X. (12b)
m™ odd S-polarized mode (m=0):

os(X,z=d/2,1)=0, (13a)

JoX, 2= 072, 1) = —Hy(X, z= d/2, )y =2(=1)"N(@) (E;1/Zs) c0s Bncos (k"X — wt) . (13b)

Once again, it is easy to verify the satisfaction of the charge-current continuity equation for the
above distributions.




