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Opti 501 Solutions 
 
Problem 14) a) Using the dispersion relation, k2 = kx

2 + kz
2 = (ω/c)2μ(ω)ε (ω), and the fact that 

the x-component of k is given by kx= (ω/c)n(ω)sinθ , we write 

 kz =√ (ω/c)2n(ω)2− kx
2 = (ω/c)n(ω)cosθ. (1) 

Maxwell’s 1st equation: k1⋅E1= 0 → kxEx1 + kzEz1 = 0 → Ez1= −kxEx1/kz  → Ez1 = −(tanθ )Ex1. 

 Similarly, k2⋅E2= 0 → Ez2 = (tanθ )Ex2. (2) 

Maxwell’s 3rd equation: k1×E1 = μoμ(ω)ω H1 → Hx1 = − kzEy1/(μoω)  → Hx1 = − n(ω)Ey1cosθ /Zo; 

 Hy1 = (kzEx1− kxEz1)/(μoω) = n(ω)Ex1/(Zocosθ );    Hz1 = kxEy1/(μoω) = n(ω)Ey1sinθ /Zo. (3a) 

Similarly, Hx2 = n(ω)Ey2cosθ /Zo; Hy2 = − n(ω)Ex2/(Zocosθ ); Hz2 = n(ω)Ey2sinθ /Zo. (3b) 

b) Setting Ex2 = Ex1 and Ey2= Ey1 for an even mode, the superposition of the two plane-waves 
produces the following fields throughout the waveguide: 

 E(r,t) = Real{E1exp[i(k1 ⋅r −ω t)]+ E2exp[i(k2⋅r−ω t)]} 
 = Real{[E1exp(ikzz) + E2exp(− ikzz)]exp[i(kxx −ω t)]} 

 = Real{{Ex1[exp(ikzz)+exp(− ikzz)]x^ + Ey1[exp(ikzz) +exp(− ikzz)]y^  

 − tanθ Ex1[exp(ikzz) −exp(− ikzz)]  z^ }exp[i(kxx −ω t)]} 

 = 2Ex1cos(kzz) cos(kxx −ω t)  x^ + 2Ey1cos(kz z)cos(kxx −ω t) y^ + 2tanθ Ex1sin(kz z)sin(kxx −ω t)  z^ . 
 (4a) 
 H(r,t) = Real{H1exp[i(k1 ⋅r−ω t)]+ H2exp[i(k2⋅r −ω t)]} 
 = 2Zo

−1n(ω)[Ey1cosθ sin(kzz) sin(kxx −ω t) x^ −(Ex1/cosθ )sin(kz z)sin(kxx −ω t) y^  

 + Ey1sinθ cos(kz z)cos(kxx −ω t)  z^]. (4b) 

c) At the surface of the conductor, there cannot be any tangential E- or perpendicular B-fields, 
which means that Ex= Ey= Hz= 0 at z= ±d/2. This is possible only when cos(±½kzd) = 0, that is, 

   ½(ω d /c)n(ω)cosθ = (m+½)π   →   cosθm = (m +½)λo/[n(ω)d], (5) 

where the vacuum wavelength, λo= 2πc/ω, has been used. The mode can exist when cosθ <1. 
The smallest possible value of the integer m being zero, it is necessary to have d >½λo/n(ω) to 
ensure the existence of at least one even mode. The even mode is said to be “cut-off” when the 
slab thickness d happens to be below ½λo/n(ω). For single mode operation, d must be in the 
following range: 
 ½λo/n(ω) < d < 3/2λo/n(ω). (6) 

With regard to the polarization state of the guided mode, two possibilities exist: 
i) p-polarized mode (also called transverse magnetic, TM, mode): Ex1≠ 0, Ey1= 0.  
ii) s-polarized mode (also called transverse electric, TE, mode): Ex1= 0, Ey1≠ 0. 
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In the case of even modes currently under consideration, the preceding statements with regard to 
cut-off and single-mode operation apply to both TE and TM modes. 

d) According to Maxwell’s 1st equation, ∇ ⋅D =ρfree , the surface charge density is equal to the 
perpendicular D-field, εoε E⊥ , at the surface of a perfect conductor. We thus have: 

mth p-polarized even mode: 

 σ s(x, z = d/2, t) = −εoε Ez(x, z = d /2, t) = 2(−1)m+1εon2(ω)tanθm Ex1sin(kx
(m )x −ω t). (7a) 

mth s-polarized even mode: 
 σ s(x, z = d/2, t) = 0. (7b) 

Also, according to Maxwell’s 2nd equation, ∇ ×H = Jfree+∂ D/∂ t, the surface current density of a 
perfect conductor is equal but perpendicular to the tangential magnetic field, H||. Therefore, 

mth p-polarized even mode: 

 Js(x, z = d /2, t) = Hy(x, z = d /2, t)x^ = 2(−1)m+1n(ω)(Ex1/Zocosθm)sin(kx
(m )x −ω t) x^ . (8a) 

mth s-polarized even mode: 

 Js(x, z = d /2, t) = −Hx(x, z= d /2, t)y^ = 2(−1)m+1n(ω)(Ey1/Zo)cosθm sin(kx
(m )x −ω t) y^. (8b) 

It may be readily verified that the above distributions satisfy the charge-current continuity 
equation,∇ ⋅Js+∂ σ s/∂ t =0. 

e) Setting Ex2 = −Ex1 and Ey2= −Ey1 for an odd mode, the superposition of the two plane-waves 
produces the following fields throughout the waveguide: 

 E(r,t) = Real{E1exp[i(k1 ⋅r −ω t)]+ E2exp[i(k2⋅r−ω t)]} 
 = Real{{Ex1[exp(ikzz)−exp(− ikzz)]x^ + Ey1[exp(ikzz) −exp(− ikzz)]y^  

 − tanθ Ex1[exp(ikzz) + exp(− ikzz)]  z^ }exp[i(kxx −ω t)]} 
 = −2[Ex1sin(kzz) sin(kxx −ω t)  x^ + Ey1sin(kz z)sin(kxx −ω t) y^ + tanθ Ex1cos(kz z)cos(kxx −ω t)  z^]. 
 (9a) 
 H(r,t) = Real{H1exp[i(k1 ⋅r−ω t)]+ H2exp[i(k2⋅r −ω t)]} 
 = −2Zo

−1n(ω)[Ey1cosθ cos(kzz) cos(kxx −ω t) x^ −(Ex1/cosθ )cos(kz z)cos(kxx −ω t) y^  
 + Ey1sinθ sin(kz z)sin(kxx −ω t)  z^]. (9b) 

At the conductors’ surfaces, z = ±d /2, where Ex = Ey = Hz = 0, we must have sin(±½kzd) = 0, i.e., 

 ½(ω d /c)n(ω)cosθ = mπ    →    cosθm = mλo/[n(ω)d]. (10) 

In this case the lowest-order mode, corresponding to m = 0, obtains when θm = 90º. However, we 
now have kx= (ω/c)n(ω) and kz = 0. Under these circumstances, in accordance with Eqs.(9a) and 
(9b), Ex,Ey,Hx, and Hz will identically vanish throughout the slab. The only surviving fields are 
Ez and Hy, which go to infinity unless one recognizes that, by allowing Ex to approach zero when 
θ →90º, Ez and Hy could attain finite values, namely, 

 E(r,t) = Ezcos(kx
(0 )x −ω t)  z^ ;                    (m = 0), (11a) 
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 H(r,t) = −n(ω)(Ez /Zo)cos(kx
(0 )x −ω t) y^ ;           (m = 0). (11b) 

This p-polarized (TM) mode always exists, no matter how thin the slab may be. Taking note of 
the fact that cosθm ≤ 1 for any value of m, the condition for p-polarized single-mode operation in 
the m = 0 guided mode is d <λo/n(ω). 

For odd modes that are s-polarized (TE), the first possibility for propagation is m= 1, in 
which case single-mode operation occurs when λo/n(ω) < d <2λo/n(ω). The cut-off for odd TE 
modes occurs below d =λo/n(ω). 

At the surface of the upper conductor which is in contact with the dielectric slab, surface 
charge and current densities for odd modes are found to be: 

mth odd p-polarized mode (m ≠ 0): 

 σs(x, z = d /2, t) = −εoε Ez(x, z = d /2, t) = 2(−1)mεon2(ω)tanθm Ex1cos(kx
(m )x −ω t), (12a) 

 Js(x, z = d /2, t) = Hy(x, z = d /2, t)x^ = 2(−1)mn(ω)(Ex1/Zocosθm)cos(kx
(m )x −ω t) x^ . (12b) 

mth odd s-polarized mode (m ≠ 0): 

 σs(x, z = d /2, t) = 0, (13a) 

 Js(x, z = d /2, t) = −Hx(x, z= d /2, t)y^ = 2(−1)mn(ω)(Ey1/Zo)cosθm cos(kx
(m )x −ω t) y^ . (13b) 

Once again, it is easy to verify the satisfaction of the charge-current continuity equation for the 
above distributions. 
 

3/3


