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Opti 501 Solutions  
 
Problem 11) a) The E- and H-fields of the incident plane-wave are given by 

 (i) (i)
o( , ) exp[i ( )];pt tω= ⋅ −E r E k r  (1a) 

 (i) (i)
o( , ) exp[i ( )].pt tω= ⋅ −H r H k r  (1b) 

The dispersion relation in free space is k2= (ω/c)2. Therefore, 

 (i) ˆ ˆˆ ˆ( / ) (sin cos ).x zk k cω θ θ= + = +k x z x z  (2) 

The incident E-field amplitude, as shown in the figure, is given by 

 (i)
oo

ˆ ˆ(cos sin ).p pE θ θ= −E x z  (3) 

It may be readily verified that this E-field satisfies Maxwell’s first equation, namely, 0,⋅ =E∇  
which is equivalent to (i) (i)

o 0.p⋅ =k E  As for the incident H-field, Maxwell’s third equation, 
/ ,t∂ ∂× = −E B∇  yields 

 (i) (i) (i) (i)
o oo o o o

ˆ ˆˆ ˆi i ( / )(sin cos ) (cos sin )p p p pc Eωμ ω θ θ θ θ ωμ× = → + × − =k E H x z x z H  

 (i)
oo o

ˆ( ) .p pE Z=→ H / y  (4) 
 
b) The E- and H-fields of the reflected wave are written 

 (r) (r )
o( , ) exp[i ( )];pt tω= ⋅ −E r E k r  (5a) 

 (r) (r )
o( , ) exp[i ( )].pt tω= ⋅ −H r H k r  (5b) 

The reflected k-vector is similar to the incident k-vector, except for the sign of kz, that is, 

 (r) ˆ ˆˆ ˆ( / ) (sin cos ).x zk k cω θ θ= − = −k x z x z  (6) 

The reflected E-field amplitude must cancel out the tangential component of the incident E-field 
at the surface of the perfect conductor, as there cannot be any E-fields inside the conductor. We 
thus have 

 (r)
oo

ˆ ˆ(cos sin ).p pE θ θ= − +E x z  (7) 

As before, it may be readily verified that the above E-field satisfies Maxwell’s first equation, 
namely, (r) (r )

o 0.p⋅ =k E  The reflected H-field is, once again, obtained from Maxwell’s third 
equation, as follows: 

 (r) (r ) (r ) (r )
o oo o o o

ˆ ˆˆ ˆi i ( / )(sin cos ) ( cos sin )p p p pc Eωμ ω θ θ θ θ ωμ× = → − × − − =k E H x z x z H  

 (r )
oo o

ˆ( ) .p pE Z=→ H / y  (8) 
c) The rate of flow of energy per unit cross-sectional area per unit time is given by the time-
averaged Poynting vector, namely, 
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 (i) (i)
oo o o o

(i) * *1 1
2 2 ˆ ˆˆRe Re (cos sin( , ) ) ( )[ ] [ ]p p p pt E E Zθ θ= × − ×> =< E H /S r x z y  

 
2

o

o

ˆ ˆ(sin cos ).2
| |pE

Z θ θ= +x z  (9) 

 (r) (r)
oo o o

r)
o

( * *1 1
2 2 ˆ ˆˆRe Re (cos( , ) sin ) ( )[ ] [ ]p p p pE E Zt θ θ= × = + ×< > −E H x /S r z y  

 
2

o

o

ˆ ˆ(sin cos ).2
| |pE

Z θ θ= −x z  (10) 

The incident and reflected waves are seen to have a time-averaged Poynting vector < S > directed 
along the corresponding k-vector. The magnitudes of these Poynting vectors, however, are the 
same, namely, |Epo|2/(2Zo). Therefore, the incident and reflected energy fluxes are identical. 
 
d) The surface-current-density Js(x,y, t) is equal in magnitude and perpendicular in direction to 
the total H-field at the surface of the perfect conductor. Taking into account the right-hand rule 
relating the direction of the surface current to that of the H-field, we will have 

 (i) (r ) ˆ( , , 0( , , , ) ( , , 0) , )[ ]y ys x y H x y z t H x y z tt = = + =J x  

 oooo
ˆ2( / ) exp[i( / ) ( siˆ2( / ) exp n )]i ( ] .[ ) pp xE Z k x E Z x ct c tω ω θ −= − =x x  (11) 

e) The surface-charge-density σs(x,y, t) is given by the discontinuity in the perpendicular 
component of the D-field, that is, 

 (i) (r)
o( , ( , , 0, ) ( , , 0,) ), [ ]zs zE x y z t E x y z tx y t εσ = − = + =  

 o oo o 2 sin exp[i( / ) ( si2 sin exp[i ( ) ]] n ) .pp x E c xx ctE k t ε θθ ω ω θε= − −=  (12) 

f) Substituting in the continuity equation for Js from Eq.(11) and for σs from Eq.(12), we find 

 ooo o2i( / )sin ( / ) 2i sin exp[i/ / ( / ) ( sin )][ ]sx s p pc E Z E cJ x t x ctω θ ωε θ∂σ ω∂ ∂ θ∂ = − −+  

 1
oo o2 i ( ) sin exp[i( 0./ ) ( sin )][ ] pcZ E c x ctω ε θ ω θ− − − ==  (13) 

The continuity equation is thus satisfied by the induced surface-charge and surface-current. 
 


