Opti 501 Solutions

Problem 11) a) The E- and H-fields of the incident plane-wave are given by

E(r,t)=E{exp[i(k®-r —wt)]; (1a)

H(r,t)=Hexp[i(kV-r —wt)]. (1b)
The dispersion relation in free space is k?= (w/c)®. Therefore,

k" =Kk X+k 7= (w/c)(sin@ X +cos 7). (2)

The incident E-field amplitude, as shown in the figure, is given by

EQ=E, (cosdX—sind7). (3)
It may be readily verified that this E-field satisfies Maxwell’s first equation, namely, vV -E =0,
which is equivalent to k®-E{’=0. As for the incident H-field, Maxwell’s third equation,
Vx E=-0B/ot, yields

ikVxEY=iouHY — (wlc)(sindX+cosd2)xE, (cosdX—sinf2)=awu,H

— H;jj = (E, /Z,)§. (4)

b) The E- and H-fields of the reflected wave are written
E(r,t)=EDexp[i(k™-r —wt)]; (5a)
H(r,t)=Hexp[i(k"”-r-wt)]. (5b)
The reflected k-vector is similar to the incident k-vector, except for the sign of k, that is,
k" =k X—k 7= (wlc)(sin@ X —cosO?7). (6)
The reflected E-field amplitude must cancel out the tangential component of the incident E-field

at the surface of the perfect conductor, as there cannot be any E-fields inside the conductor. We
thus have

" _ S ising3
E, =-E,(cosdX +sinz). (7
As before, it may be readily verified that the above E-field satisfies Maxwell’s first equation,

namely, k®-E{’=0. The reflected H-field is, once again, obtained from Maxwell’s third
equation, as follows:

ikOxED=iouHY — (0lc)(singX —cos§7)xE, (—cosdX—sind7)=wu,HY

- HY =(E,/Z,)9. (8)
c) The rate of flow of energy per unit cross-sectional area per unit time is given by the time-
averaged Poynting vector, namely,



<SO(r,t)>=1Re[EQxHY ]=1Re[E, (cosd X—sin07) x (E, /Z,)§]

Bl Ginos+ cosoz 9
=55 —(sin@X+cosd?). (9)

<SO(r,t)>=1Re[E VxH [=1Re[-E,(cosO X +sin07) x (E /Z,)Y]
CES
=% (sin@x —cos0z7). (10)

The incident and reflected waves are seen to have a time-averaged Poynting vector <S> directed
along the corresponding k-vector. The magnitudes of these Poynting vectors, however, are the
same, namely, |Ep0|2/(220). Therefore, the incident and reflected energy fluxes are identical.

d) The surface-current-density Jy(x,y,t) is equal in magnitude and perpendicular in direction to
the total H-field at the surface of the perfect conductor. Taking into account the right-hand rule
relating the direction of the surface current to that of the H-field, we will have

Iy, t) =[HP(x y,z=0,) + H"(x, y, z=0,1)] X
= 2(E,/Z,)expli (k,x— ot)] X = 2(E, /Z,) expli(@/c) (xsin 6 - ct)] X, (11)

e) The surface-charge-density os(x,Y,t) is given by the discontinuity in the perpendicular
component of the D-field, that is,

o (% y,t)=—¢,[EL(x y,z=0,t) + E"(x,y,z=0,1)]
=2¢,E, sindexpli(kx—wt)]=2¢,E, sin @ exp[i(w/c) (xsin & —ct)]. (12)
f) Substituting in the continuity equation for Js from Eq.(11) and for o5 from Eq.(12), we find
2 lox+ do Jot=[2i(wlc)sinO(E, /Z,) - 2iwe, E, sin @] exp[i(w/c) (xsin 6 —ct)]
=2iw[(cZ)"-¢,]E, sin@exp[i(w/c) (xsin§—ct)] = 0. (13)

The continuity equation is thus satisfied by the induced surface-charge and surface-current.




