Opti 501 Solutions

Problem 10) a) The E- and H-fields of the incident plane-wave are given by
E(r,t)=EQexp[i(k®-r —ot)]; (1a)
H(r,t)=HLexp[i(k?-r - ot)]. (1b)

The dispersion relation in free space is k?= (w/c)?. Therefore,

kO =Kk X+Kk,Z = (@/C) (sin @ X+cos 6 ?). 2)

The incident E-field amplitude, as shown in the figure, is given by

Ey =EJY. ©)
It may be readily verified that this E-field satisfies Maxwell’s first equation, namely, V' -E =0,

which is equivalent to k©-E® =0. As for the incident H-field, Maxwell’s third equation,
Vx E =-0Blot, yields

iIK'%ED =iouHY — (wlc)(sin@X+cosd2)xEL Y =wu HLY

- HY=—(EL1Z)(cosd X -sinb?). (4)
A similar treatment yields for the reflected plane-wave,
k" =k X—k 7 = (wlc) (sin@ X —cosB?), (5)
EY=EJY, (6)
HO = (EY/Z.)(cosd X +sind 2). (7)

As for the transmitted beam, the dispersion relation in the dielectric medium is k?= (w/c)’n*(®);
also, in accordance with Snell’s law, we must have k{ =k and k{V =k’ = 0. Therefore,

kO = kX +kVZ = (wlc) [sin O X+ n*(w) —sin®0 Z]. (8)
Next, we obtain the transmitted E-field using the continuity of tangential E at the interface:
By =(EJ+EQ)Y. 9)

Subsequently, the transmitted H-field is obtained from Maxwell’s third equation, as follows:
KYEY = 0ou HY — (0lc)[sin@ X+ n*(w)-sin*0 Z] xEL Y =wu, HL

S HO = (0 12) [ @) s & sind 7] (10

b) Continuity of the tangential E-field is already assured by means of Eq.(9). The only remaining
constraint involves the tangential H-field, whose continuity equation is written

HO+HO =HO - —(EY/Z)cos0+(EL/Z,) cos@=—(EL/Z,)\n*(w)-sin*0. (11)

The Fresnel reflection and transmission coefficients, defined as p, = EY/EY and 7 .=EV/EY,
may now be used in conjunction with Egs.(9) and (11) to yield

1



~EQcos 0+ p,EYcos0 =~ L+ p, ) EY\n(@) ~sin’6 . (12)

Solving the above equation for ps, we find

0 n*(w) —sin’6
p- cos n“(w) —sin . (13)
c0s @ + | n*(w) —sin’6
From Eq.(9) and the definitions of the Fresnel coefficients, it is obvious that zs=1+ps; therefore,
.= 2cosé (14)

cosd + [ n¥(@) —sin?0

c) The rate-of-flow of energy per unit cross-sectional area per unit time for each of the three
plane-waves is given by the corresponding time-averaged Poynting vector, as follows:

<SO(r,t)>=1Re[EQxHY =—1Re[ELY x (EY"/Z,)(cos O X —sing 2)

EOF

= 2; (sin@x+cosf?7). (15)
<SO(rt)>=2Re[EXxHL T=1Re[ELYx (EL"/Z,)(cos O X +5ing 2)
_EQ” | "’|2
=27 =2 (sin@X —cosO?7) =|p.[=2—(sin@dX —cosH?7). (16)

<SO(r,t)> =2Re[E Px HO = ~2Re[ESY (Eg)*/ZO)[\/ n*(w)—sin’d X —sind 7]
[EQ” -
:%[sinex + N*(w)—sin’0 7]

_1 e N@)|EG)’
- |Ts| ZZO

To verify the conservation of energy, consider an incident beam whose cross-sectional diameter
in the xz-plane is D. The footprint of this beam on the x-axis will then be D/cosé, resulting in a
transmitted beam whose cross-sectional diameter in the xz-plane is D(cosé'/cosd). Considering
the various Poynting vectors in Egs.(15)-(17), and the fact that the reflected beam diameter in
the xz-plane remains equal to D, we must show that the following identity holds:

|p)? + (cos@'Icos 0) n(w) |z |* =1. (18)

(sin@ X+cos@'?7). (17)

Substitution from Egs.(13) and (14) into Eq.(18), and noting that n(w)cosé’=vn*(w)—sin’6,
then yields

[cos @/ n*(w) —sin®]? \/n(a)) sin’@ Icos 0] (2cos 6)? 1 (19)
[cos @ + \/ n*(w) —sin’6 2" [cos 6 + \/ n*(w) —sin®6]? '

The energy fluxes of the reflected and transmitted beams thus add up to that of he incident beam,
proving that electromagnetic energy in the present problem is conserved.




