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Opti 501 Solutions 1/4 
 
Problem 7.9) 

a) At normal incidence, where 𝜃𝜃 = 0, we find 

 𝜌𝜌𝑝𝑝 = 𝑛𝑛1√𝜀𝜀2 − 𝜀𝜀2
𝑛𝑛1√𝜀𝜀2 + 𝜀𝜀2

= 𝑛𝑛1− √𝜀𝜀2
𝑛𝑛1+ √𝜀𝜀2

 , 𝜌𝜌𝑠𝑠 = 𝑛𝑛1 − √𝜀𝜀2 
𝑛𝑛1+ √𝜀𝜀2 

· 

Thus 𝜌𝜌𝑝𝑝 = 𝜌𝜌𝑠𝑠 at normal incidence. This is expected, of course, because at normal incidence there 
is no difference between 𝑝𝑝- and 𝑠𝑠-polarization. In other words, at 𝜃𝜃 = 0 the plane of incidence, 
relative to which 𝑝𝑝- and 𝑠𝑠-directions are defined, becomes indeterminate. 
 
b) TIR occurs when the second medium is also transparent, that is, when 𝜀𝜀2 is real-valued and 
positive. In TIR we must have |𝜌𝜌𝑝𝑝| = 1 and |𝜌𝜌𝑠𝑠| = 1. Each Fresnel reflection coefficient is the 
ratio of the difference to the sum of two numbers. When two complex numbers have a phase 
difference of 90°, their sum and difference will have exactly the same magnitudes and, therefore, 
the ratio of difference to sum will have a magnitude of 1.0. In the formulas for 𝜌𝜌𝑝𝑝 and 𝜌𝜌𝑠𝑠, since 
𝑛𝑛1, 𝜀𝜀2, sin𝜃𝜃 and cos 𝜃𝜃 are all real numbers, the only way in which the numbers in the numerator 
and denominator could acquire a 90° phase difference would be for the square-roots to become 
purely imaginary. Therefore, when 𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃 < 0, the square-roots become imaginary, the 
two numbers appearing in the numerator and denominator of each expression for the Fresnel 
coefficient become 90° apart, and we obtain |𝜌𝜌𝑝𝑝| = |𝜌𝜌𝑠𝑠| = 1. The condition for TIR is thus 

 𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃 < 0      →        sin2 𝜃𝜃 > 𝜀𝜀2 𝑛𝑛12⁄ = 𝑛𝑛22 𝑛𝑛12⁄           →          sin𝜃𝜃 > 𝑛𝑛2 𝑛𝑛1⁄ .  

Considering that sin𝜃𝜃 cannot exceed unity, we must have 𝑛𝑛2 < 𝑛𝑛1. The critical angle for 
TIR is readily seen to be 𝜃𝜃𝑐𝑐 = sin−1(𝑛𝑛2 𝑛𝑛1⁄ ). 

From the above argument it must be clear that the critical angles for 𝑝𝑝- and 𝑠𝑠-polarized 
plane-waves are the same. One can also argue on physical grounds that the two critical angles 
must coincide, as follows. For |𝜌𝜌𝑝𝑝| = 1 and/or |𝜌𝜌𝑠𝑠| = 1, we must have 100% of the incident 
optical energy reflected back into the incidence medium. This means that the transmitted beam in 
both cases (i.e., for 𝑝𝑝- and 𝑠𝑠-polarized light) cannot carry any energy and must, therefore, be 
evanescent. Now, the condition for evanescence is a condition on the 𝑘𝑘-vector of the transmitted 
plane-wave, not on its 𝐸𝐸- and 𝐻𝐻-field amplitudes. When the boundary conditions are matched, 
the 𝑘𝑘-vector is determined by the requirement that 𝑘𝑘𝑥𝑥 and 𝑘𝑘𝑦𝑦 (and also 𝜔𝜔) be the same for the 
incident, reflected, and transmitted plane-waves. This requirement (which is rooted in Maxwell’s 
boundary conditions) is what we have referred to as Snell’s law. Thus, transition from 
propagating to evanescent field occurs as a result of the application of Snell’s law to the 𝑘𝑘-
vectors, which is independent of the incident beam being 𝑝𝑝- or 𝑠𝑠-polarized. The condition for 
TIR, therefore, cannot depend on the state of polarization of the incident beam. 
 
c) At Brewster’s angle 𝜌𝜌𝑝𝑝 = 0, that is, 

 𝑛𝑛1�𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃 = 𝜀𝜀2 cos 𝜃𝜃       →       𝑛𝑛12(𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃) = 𝜀𝜀22 cos2 𝜃𝜃  

 →          𝑛𝑛12𝜀𝜀2
𝜀𝜀22 cos2 𝜃𝜃

− 𝑛𝑛14 sin2 𝜃𝜃
𝜀𝜀22 cos2 𝜃𝜃

= 1         →       (𝑛𝑛12 𝜀𝜀2⁄ )(1 + tan2 𝜃𝜃) −  (𝑛𝑛12 𝜀𝜀2⁄ )2 tan2 𝜃𝜃 = 1 
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 →     (𝑛𝑛12 𝜀𝜀2⁄ ) − 1 = (𝑛𝑛12 𝜀𝜀2⁄ )[(𝑛𝑛12 𝜀𝜀2⁄ ) − 1] tan2 𝜃𝜃         →        tan2 𝜃𝜃 = 𝜀𝜀2 𝑛𝑛12⁄  

 →      tan𝜃𝜃 = (𝑛𝑛2 + i𝜅𝜅2) 𝑛𝑛1⁄ . 

In the above derivation, we have ignored the trivial solution, 𝑛𝑛12 𝜀𝜀2⁄ = 1, which yields 
𝑛𝑛1 = √𝜀𝜀2, and results in a perfect “impedance match” at the interface. 

For a non-trivial solution to exist, we must have tan𝜃𝜃 = (𝑛𝑛2 𝑛𝑛1⁄ ) + i(𝜅𝜅2 𝑛𝑛1⁄ ). Given that 
tan𝜃𝜃 is real, 𝜅𝜅2 must be zero. Moreover, 0 ≤ 𝜃𝜃 < 90° requires that tan𝜃𝜃 > 0; consequently, 
𝑛𝑛2 > 0. Thus, a Brewster’s angle exists when 𝜀𝜀2 is real and positive. The incidence angle at 
which 𝜌𝜌𝑝𝑝 = 0 is seen to be 𝜃𝜃B = tan−1(√𝜀𝜀2 𝑛𝑛1⁄ ). Both 𝑛𝑛2 = √𝜀𝜀2 > 𝑛𝑛1 and 𝑛𝑛2 < 𝑛𝑛1 are allowed. 

For 𝑠𝑠-polarized light, a Brewster’s angle does not exist because  

 𝜌𝜌𝑠𝑠 = 0    →    𝑛𝑛1 cos 𝜃𝜃 = �𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃    →   𝑛𝑛12(cos2 𝜃𝜃 + sin2 𝜃𝜃) = 𝜀𝜀2   →   𝑛𝑛12 = 𝜀𝜀2, 

which is true only in the trivial case when there is perfect “impedance match” at the interface 
between the two media.  
 
d) We have already seen in part (c) above that for 𝜌𝜌𝑝𝑝 to become zero, 𝜅𝜅2 must vanish. Thus any 
absorption (or gain for that matter) is incompatible with the existence of a Brewster’s angle. 
 
e) When 𝜃𝜃 → 90°, sin𝜃𝜃 → 1 and cos 𝜃𝜃 → 0. Therefore, 

 𝜌𝜌𝑝𝑝 = �𝑛𝑛1�𝜀𝜀2 − 𝑛𝑛12� �𝑛𝑛1�𝜀𝜀2 − 𝑛𝑛12�� = +1, 

 𝜌𝜌𝑠𝑠 = −�𝜀𝜀2 − 𝑛𝑛12 �𝜀𝜀2 − 𝑛𝑛12� = −1. 

With 𝑠𝑠-light, the incident and reflected plane-waves cancel each other out, and there will be 
no 𝐸𝐸-field parallel to the surface, nor will there be an 𝐻𝐻-field perpendicular to the surface. The 
same thing happens with 𝑝𝑝-light; however, one must be careful in interpreting the meaning of 𝜌𝜌𝑝𝑝, 
since it represents the ratio 𝐸𝐸𝑥𝑥0r 𝐸𝐸𝑥𝑥0i⁄ . Indeed, the ratio 𝐸𝐸𝑧𝑧0r 𝐸𝐸𝑧𝑧0i⁄  approaches −1 for 𝑝𝑝-light, as 
does the ratio 𝐻𝐻𝑦𝑦0r 𝐻𝐻𝑦𝑦0i⁄ . 

f ) The answer is yes, there can be total reflection at the interface when 𝜅𝜅2 ≠ 0, but then we must 
have 𝑛𝑛2 = 0; in other words, 𝜀𝜀2 must be real-valued and negative. The proof is outlined below. 
 
i) Case of 𝒔𝒔-polarization. In order to have |𝜌𝜌𝑠𝑠|2 = 1.0, we must have 

 �𝑛𝑛1 cos𝜃𝜃 − �𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃��𝑛𝑛1 cos𝜃𝜃 − �𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃�
∗
 

 = �𝑛𝑛1 cos𝜃𝜃 +�𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃��𝑛𝑛1 cos𝜃𝜃 + �𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃�
∗
 

 →  −𝑛𝑛1 cos𝜃𝜃 ��𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃 + �𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃
∗
� = 𝑛𝑛1 cos𝜃𝜃 ��𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃 + �𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃

∗
� 

 →  �𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃 + �𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃
∗

= 0       →     �𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃 = purely imaginary. 

Let 𝛼𝛼 be an arbitrary real number. Then �𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃 = i𝛼𝛼 yields 𝜀𝜀2 = 𝑛𝑛12 sin2 𝜃𝜃 − 𝛼𝛼2, 
which is a purely real number. If 𝜀𝜀2 happens to be a positive real number, we will have the 
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condition for conventional TIR at the interface between two transparent media, namely, sin𝜃𝜃 >
√𝜀𝜀2 𝑛𝑛1⁄ = 𝑛𝑛2 𝑛𝑛1⁄ . However, if 𝜀𝜀2 turns out to be a negative real number, then �𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃 
will be imaginary for all values of 𝜃𝜃, resulting in 100% reflectivity at all incidence angles 𝜃𝜃. 

ii) Case of 𝒑𝒑-polarization. In order to have |𝜌𝜌𝑝𝑝|2 = 1.0, we must have 

 �𝑛𝑛1�𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃 − 𝜀𝜀2 cos𝜃𝜃��𝑛𝑛1�𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃 − 𝜀𝜀2 cos 𝜃𝜃�
∗
 

 = �𝑛𝑛1�𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃 + 𝜀𝜀2 cos 𝜃𝜃��𝑛𝑛1�𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃 + 𝜀𝜀2 cos𝜃𝜃�
∗
 

 →       −𝑛𝑛1�𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃 𝜀𝜀2∗ cos 𝜃𝜃 − 𝜀𝜀2 cos 𝜃𝜃 𝑛𝑛1�𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃
∗
 

 = 𝑛𝑛1�𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃 𝜀𝜀2∗ cos 𝜃𝜃 + 𝜀𝜀2 cos 𝜃𝜃 𝑛𝑛1�𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃
∗
 

 →   𝜀𝜀2∗�𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃 + 𝜀𝜀2�𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃
∗

= 0 →  𝜀𝜀2∗�𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃 = purely imaginary. 

Let 𝛼𝛼 be an arbitrary real number. Then 𝜀𝜀2∗�𝜀𝜀2 − 𝑛𝑛12 sin2 𝜃𝜃 = i𝛼𝛼 yields 

 (𝜀𝜀2′ − i𝜀𝜀2″)2(𝜀𝜀2′ − 𝑛𝑛12 sin2 𝜃𝜃 + i𝜀𝜀2″) = −𝛼𝛼2 

 →        (𝜀𝜀2′2 − 𝜀𝜀2″2 − 2i𝜀𝜀2′ 𝜀𝜀2″)(𝜀𝜀2′ − 𝑛𝑛12 sin2 𝜃𝜃 + i𝜀𝜀2″) = −𝛼𝛼2     (𝛼𝛼 is an arbitrary real number) 

 →       �
(𝜀𝜀2′2 − 𝜀𝜀2″2)(𝜀𝜀2′ − 𝑛𝑛12 sin2 𝜃𝜃) + 2𝜀𝜀2′ 𝜀𝜀2″2 = −𝛼𝛼2

𝜀𝜀2″(𝜀𝜀2′2 − 𝜀𝜀2″2) − 2𝜀𝜀2′ 𝜀𝜀2″(𝜀𝜀2′ − 𝑛𝑛12 sin2 𝜃𝜃) = 0
 

 →      �
𝜀𝜀2′2(𝜀𝜀2′ − 𝑛𝑛12 sin2 𝜃𝜃) + 𝜀𝜀2″2(𝜀𝜀2′ + 𝑛𝑛12 sin2 𝜃𝜃) = −𝛼𝛼2

𝜀𝜀2″(𝜀𝜀2″2 + 𝜀𝜀2′2 − 2𝜀𝜀2′𝑛𝑛12 sin2 𝜃𝜃) = 0  →  �
𝜀𝜀2″ = 0                                           (first solution)

𝜀𝜀2″2 = 2𝜀𝜀2′𝑛𝑛12 sin2 𝜃𝜃 −𝜀𝜀2′2     (second solution)
 

First solution: 𝜀𝜀2″ = 0   →    𝜀𝜀2′2(𝜀𝜀2′ − 𝑛𝑛12 sin2 𝜃𝜃) = −𝛼𝛼2 

 →  𝜀𝜀2′ − 𝑛𝑛12 sin2 𝜃𝜃 = negative real number →   �
𝜀𝜀2′ < 0,

0 < 𝜀𝜀2′ < 𝑛𝑛12 sin2 𝜃𝜃 .
  

Therefore, two possibilities exist: (i) Conventional TIR, where 𝜀𝜀2 is real and positive, and 
sin2 𝜃𝜃 > 𝜀𝜀2 𝑛𝑛12⁄ = (𝑛𝑛2 𝑛𝑛1⁄ )2, that is, sin𝜃𝜃 > 𝑛𝑛2 𝑛𝑛1⁄ . (ii) 𝜀𝜀2 is real and negative, in which case 
|𝜌𝜌𝑝𝑝| = 1 for all angles of incidence 𝜃𝜃. 

Second solution: 𝜀𝜀2″2 = 2𝜀𝜀2′𝑛𝑛12 sin2 𝜃𝜃 −𝜀𝜀2′2 

 →      𝜀𝜀2′3 − 𝜀𝜀2′2𝑛𝑛12 sin2 𝜃𝜃 + (2𝜀𝜀2′𝑛𝑛12 sin2 𝜃𝜃 −𝜀𝜀2′2)(𝜀𝜀2′ + 𝑛𝑛12 sin2 𝜃𝜃) = −𝛼𝛼2 

 →      𝜀𝜀2′3 − 𝜀𝜀2′2𝑛𝑛12 sin2 𝜃𝜃 + 2𝜀𝜀2′2𝑛𝑛12 sin2 𝜃𝜃 + 2𝜀𝜀2′𝑛𝑛14 sin4 𝜃𝜃 − 𝜀𝜀2′3 − 𝜀𝜀2′2𝑛𝑛12 sin2 𝜃𝜃 = −𝛼𝛼2 

 →       2𝜀𝜀2′𝑛𝑛14 sin4 𝜃𝜃 = −𝛼𝛼2        →        𝜀𝜀2′  is purely negative. 

However, if this happens we will have 𝜀𝜀2″2 = 2𝜀𝜀2′𝑛𝑛12 sin2 𝜃𝜃 −𝜀𝜀2′2 < 0, which is unacceptable 
for 𝜀𝜀2″2, a purely positive number. Therefore, a second solution does not exist. 


