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Problem 7.9)
a) At normal incidence, where 8 = 0, we find
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Thus p, = p, at normal incidence. This is expected, of course, because at normal incidence there
is no difference between p- and s-polarization. In other words, at 8 = 0 the plane of incidence,
relative to which p- and s-directions are defined, becomes indeterminate.

b) TIR occurs when the second medium is also transparent, that is, when &, is real-valued and
positive. In TIR we must have |p,| = 1 and |ps| = 1. Each Fresnel reflection coefficient is the
ratio of the difference to the sum of two numbers. When two complex numbers have a phase
difference of 90°, their sum and difference will have exactly the same magnitudes and, therefore,
the ratio of difference to sum will have a magnitude of 1.0. In the formulas for p, and py, since
n4, &, sin @ and cos O are all real numbers, the only way in which the numbers in the numerator
and denominator could acquire a 90° phase difference would be for the square-roots to become
purely imaginary. Therefore, when &, — n? sin? § < 0, the square-roots become imaginary, the
two numbers appearing in the numerator and denominator of each expression for the Fresnel
coefficient become 90° apart, and we obtain |p,| = |ps| = 1. The condition for TIR is thus

g —nfsin?0 <0 -  sin?0 > &, /nf =ni/n? - sin@ > n,/n,.

Considering that sin 8 cannot exceed unity, we must have n, < n,. The critical angle for
TIR is readily seen to be 8, = sin"!(n,/n,).

From the above argument it must be clear that the critical angles for p- and s-polarized
plane-waves are the same. One can also argue on physical grounds that the two critical angles
must coincide, as follows. For |p,| = 1 and/or |pg| = 1, we must have 100% of the incident
optical energy reflected back into the incidence medium. This means that the transmitted beam in
both cases (i.e., for p- and s-polarized light) cannot carry any energy and must, therefore, be
evanescent. Now, the condition for evanescence is a condition on the k-vector of the transmitted
plane-wave, not on its E- and H-field amplitudes. When the boundary conditions are matched,
the k-vector is determined by the requirement that k, and k,, (and also w) be the same for the
incident, reflected, and transmitted plane-waves. This requirement (which is rooted in Maxwell’s
boundary conditions) is what we have referred to as Snell’s law. Thus, transition from
propagating to evanescent field occurs as a result of the application of Snell’s law to the k-
vectors, which is independent of the incident beam being p- or s-polarized. The condition for
TIR, therefore, cannot depend on the state of polarization of the incident beam.

c) At Brewster’s angle p, = 0, that is,

&, —nisin2@ =g, cos0 > n?(e, —n?sin?0) = &2 cos? 6
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- (nf}@—/l = (n%/Ez)[(Wﬂ tan’0 >  tan?0 =¢&,/nf

- tanf = (n, +ik,)/n,.

In the above derivation, we have ignored the trivial solution, n?/s, = 1, which yields
n,; = 1/€,, and results in a perfect “impedance match” at the interface.

For a non-trivial solution to exist, we must have tan 8 = (n,/n,) + i(k,/n,). Given that
tan @ is real, Kk, must be zero. Moreover, 0 < 8 < 90° requires that tan8 > 0; consequently,
n, > 0. Thus, a Brewster’s angle exists when &, is real and positive. The incidence angle at
which p, = 0is seen to be 6 = tan™'(y/€;/n,). Both n, = y/e; > n; and n, < n; are allowed.

For s-polarized light, a Brewster’s angle does not exist because

ps=0 — nycosf =g, —n?sin20 - n?(cos?f +sin?h) =, > n? =g¢,,
which is true only in the trivial case when there is perfect “impedance match” at the interface

between the two media.

d) We have already seen in part (¢) above that for p,, to become zero, k, must vanish. Thus any
absorption (or gain for that matter) is incompatible with the existence of a Brewster’s angle.

e) When 8 — 90°, sinf — 1 and cos 8 — 0. Therefore,
Pp = (n1\/ & — n%)/(nlv & — n%) = +1,

Ps =—\/£2—n%/\/£2—n% = -1

With s-light, the incident and reflected plane-waves cancel each other out, and there will be
no E-field parallel to the surface, nor will there be an H-field perpendicular to the surface. The
same thing happens with p-light; however, one must be careful in interpreting the meaning of p,,,
since it represents the ratio EX,/EL,. Indeed, the ratio EX,/E}, approaches —1 for p-light, as
does the ratio Hyo/ Hji,o.

f) The answer is yes, there can be total reflection at the interface when k, # 0, but then we must
have n, = 0; in other words, &, must be real-valued and negative. The proof is outlined below.

i) Case of s-polarization. In order to have |p;|? = 1.0, we must have
(n1 cosf — m)(nl cosf — m)*
= (n, cos 6 + /e, — nZsin26)(ny cos 6 + m)*
- —n, cos 0 (\Je, — nZsin? 6 + /e, — n? sin? )= n, cos 6 (/e, —nZsin? 6 + /e, — nZ sin? 6)
— /&, —n?sin2 6 + /e, — n? sin? g =0 o J&, — n? sin 6 = purely imaginary.

Let a@ be an arbitrary real number. Then /e, —n?sin26 = ia yields &, = n?sin?6 — a?,
which is a purely real number. If &, happens to be a positive real number, we will have the




condition for conventional TIR at the interface between two transparent media, namely, sin 6 >

Ve;/ny = ny/ny. However, if &, turns out to be a negative real number, then /&, — n? sin? 6

will be imaginary for all values of 0, resulting in 100% reflectivity at all incidence angles 6.

i) Case of p-polarization. In order to have |p, 2 = 1.0, we must have

*
(nyy/e, —nZsin? 6 — &, cos 0)(ny+/e, — nZsin? 8 — &, cos )

*
= (ny/e; —nZsin? 6 + &, cos ) (ny+/e, — nZsin? 6 + €, cos )
. _2.28* 0 — 0 _2'29*
- N1/ €2 — N3 sin? O €5 cos 6 — &, cos O ny\/ €, — n? sin
_ M2 cin2 * — n2qgin2 :
= nq4/& —nfsin? &, cos O + &, cos 6 nl\/ez ni sin“ 6
— &3\Je, —n?sin2 0 + g51/e, —n?sin20 =0 - &5,/e, —n? sin? = purely imaginary.

Let a be an arbitrary real number. Then &5/, — n? sin? 8 = ia yields

(e5 —ie))?(eh — n?sin? O + ie)) = —a?

- (g2 —&)* — 2igjey)(e5 —n?sin? 0 +iey) = —a?  (ais an arbitrary real number)
(e2 — £)%) (&5 — n¥sin? B) + 2¢e5e5? = —a?
%
ey (2 — e5?) — 2&e5 (e —n?sin?9) = 0
e52 (g5 — n#sin? 0) + £5%(e5 + n?sin? ) = —a?
- 2 4 o2 5 g =0 (first solution)
&(e5” + &7 —2emmisin? ) =0 —> | o - _
&% = 2&yn7 sin“ 0 —gy°  (second solution)
First solution: ¢, =0 - &?(g) —n?sin?0) = —a?

!
o _ & <0,
— &, —nj sin“ 8 = negative real number - . _—
0<ée& <nyisin“6.

Therefore, two possibilities exist: (i) Conventional TIR, where ¢, is real and positive, and
sin? @ > &,/n? = (n,/ny)?, that is, sin > n,/n,. (ii) &, is real and negative, in which case
|pp| = 1 for all angles of incidence 6.

Second solution: £,? = 2&jn? sin? § —ej?
- &3 —¢e?n?sin? 0 + (2epn? sin? § —&)?) (g5 + n?sin? 9) = —
- %W+2%9+252n15m9 ;48/ /n{si4/
-  2&nisin*g = - &, is purely negative.

However, if this happens we will have £5% = 2&4n? sin? § —e}? < 0, which is unacceptable
for £52, a purely positive number. Therefore, a second solution does not exist.




