
Solutions Opti 501 

Problem 13) We solve Maxwell’s equations for a uniformly-polarized spherical dipole of radius 
R and polarization Poz^ , namely, o ˆ( , ) Sphere( / ) exp( )cos( ) ,t P r R t tω ω′′ ′=P r z  in the limit when 

0.ω′′→  The complex oscillation frequency, i ,ω ω ω′ ′′= ±  where ω′′  is a small positive number, 
will eventually approach a real-valued frequency, that is, .ω ω′→  

We shall find exact expressions for the potentials A(r,t) and ψ (r,t), and also for the radiated 
E- and H-fields, both inside and outside the spherical dipole. When the radius R of the sphere is 
small compared to the radiation wavelength λ =2pc/ω, the E-field inside the dipole may be 
expanded in a Taylor series with only the first few terms retained. One of these terms contributes 
to the spring-constant of the Lorentz oscillator model and accounts for the Clausius-Mossotti 
correction – a correction that is invoked when the Lorentz model is used in conjunction with 
dense aggregates of atoms and/or molecules. Another term represents a small correction to the 
mass m of the oscillating electron. The most important contribution to the internal E-field, 
however, comes from a 3rd-order term that opposes the oscillations and is, therefore, responsible 
for radiation resistance. We explore the consequences of this 3rd-order term for the behavior of 
the dipole, paying particular attention to damped oscillations that resemble spontaneous emission 
from atoms or molecules. 
 
Fourier transform of spherical dipole. To find the scalar and vector potentials of an oscillating 
dipole using the Fourier transform method, we must allow for a small imaginary component 
ω′′of the oscillation frequency, otherwise the integrals will not converge. Defining the complex 
frequency i ,ω ω ω′ ′′= ±  where ω′′  is a small positive number that will eventually approach zero, 
we write 

 o
1
2 ˆ( , ) Sphere( / ) exp[ i( i ) ] exp[i( i ) ] .{ }t P r R t tω ω ω ω′ ′′ ′ ′′= − + + −P r z  (1) 

The spatial Fourier transform of P(r,t) is now evaluated as follows: 
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Calculating the vector potential. The vector potential for the first component of P(r,t), i.e., the 
component with frequency ω, is found as follows: 
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The integrals can be evaluated, and the final result is found to be 
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Similarly, the vector potential for the second component with frequency ω* is found to be 
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Once again, the integrals can be evaluated and the final result turns out to be 
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Adding 1( , )tA r  and 2( , )tA r  and letting ω* approach ω, we find 
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Calculating the scalar potential. In the next step we calculate the scalar potential ( , )tψ r  for the 
spherical dipole whose Fourier transform P(k,t) is given in Eq.(2). 
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The second term in the expression of the scalar potential is obtained by replacing iω with 

−iω* in the above equation, namely, 
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Adding 1( , )tψ r  and 2( , )tψ r  and letting ω* approach ω, we now find 
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 (4) 

Electric and magnetic fields inside and outside the dipole. Having found the potentials A(r,t) 
and ψ (r,t), we now calculate the E- and B-fields as follows: 
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Approximate expressions for E- and B-fields of small spherical dipole. It is now possible to 
make approximations to the above expressions using Taylor series expansions, as the radius R of 
the sphere is much smaller than a wavelength. We will have 
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Radiated power. In this section we compute the time-averaged Poynting vector of the 
electromagnetic field radiated by the dipole oscillator in the region r > R. Using Eqs.(5), and (6), 
the exact result is found to be 
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Integration over a sphere of radius r  yields the total (time-averaged) radiated power as follows: 
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The same result may be obtained by calculating the time-averaged value of E ⋅∂ p/∂ t, where 
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dipolar current, ∂ p/∂ t, with p(t) = (4pR3/3)Pocos(ω t) z^; see Eq.(7). The internal E-field extracts 
energy from the dipole and delivers it to the radiated field. This is the essence of radiation 
resistance. 
 
The Lorentz oscillator model. Several terms contribute to the internal E-field of an oscillating 
dipole, as given by Eq.(7). The largest term is E (1)(r,t) = −(Po/3eo)cos(ω t)z^ . This field exerts a 
restoring force on the oscillating charge in proportion to the separation between the positive and 
negative charges that constitute the dipole. In doing so, it contributes to the spring-constant of 
the Lorentz oscillator model, which is encoded as the resonance frequency o.ω  If the dipole is 
driven by an external E-field, Eocos(ω t +φo)z^ , then there is no need to account for the above 
internal E-field as the spring constant of the dipole already contains its contribution. If, however, 
the dipole is embedded in a continuous medium, and the total E-field (i.e., external field plus the 
field radiated by all the dipoles of the medium, including the local dipole) is computed at the 
location of the dipole, then the computed local field must be augmented by +(Po/3eo)cos(ω t)z^  to 
avoid double-counting the contribution of E (1)(r,t). This is the logic behind the Clausius-
Mossotti correction (also known as the Lorenz-Lorentz correction). It is worth mentioning that 
the Clausius-Mossotti correction is generally applied to gases and dielectric solids or liquids, 
where bound charges contribute to the susceptibility of the medium. In the case of conduction 
electrons (where the Lorentz and Drude models coincide), the Clausius-Mossotti correction is 
never applied, the reason being that the spring-constant associated with conduction electrons is 
vanishingly small (i.e., o 0),ω =  and, therefore, there is no need for the self-field correction. 

The second contribution to the internal E-field of an oscillating dipole may be written as 
follows: 

 (2) 2 2
o o

21 1
53

ˆˆ ˆ( , ) ( / ) ( sin ) cos( ).[ ]t P R r R tµ ω θ ω= − −E r z z θ  (11) 

The spherical symmetry of E (2)(r,t) ensures that its net contribution is along the z-axis, 
while its proportionality to ω2 reveals its association with the second derivative of the 
displacement of the oscillating charge. The corresponding force, therefore, has the effect of a 
small correction to the mass m of the mobile charge q of the Lorentz oscillator model. The 
correction to m, which is on the order of µoq2/(4pR), where q ~ 1.6×10−19 C is the electronic 
charge and R ~10−10 m is the dipole radius, is indeed several orders of magnitude smaller than the 
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electron’s mass. For a single dipole driven by an external field, this correction is already 
included in the Lorentz oscillator model (in the form of an effective m). For an embedded dipole 
within a continuum, the oscillator’s mass should, in principle, be adjusted, since the computed 
local E-field does not separate E (2)(r,t) from the E-field that drives the dipole. In practice, 
however, the correction is so small that it is always neglected. 

The third and final contribution to the internal E-field is given by 

 (3) 3o
o

3 ˆ( , ) (4 /3) sin( ) .
6

t R P t
c

µ π ω ω
π

=E r z  (12) 

This field, which is entirely responsible for the radiation resistance to dipole oscillations, 
exerts a braking force on the mobile charge q analogous to the friction (or damping) term 
γ dp(t)/dt of the Lorentz oscillator model, whose governing equation is 

 
2

2
o2

2
ext

d ( ) d ( ) ( ) ( / ) ( ).
d d

t t t q m t
t t

γ ω+ + =
p p p E  (13) 

Writing po = (4pR3/3)Po for the magnitude of the dipole moment, and noting that poω sin(ω t) 
is the time derivative of −pocos(ω t), which is proportional to the velocity of the mobile charge q, 
the damping coefficient associated with radiation resistance is seen to be γ =µoq2ωo

2/(6pmc). 
[Note that the internal E-field, in much the same way as the external field, is multiplied by q2/m 
to yield a term on the left-hand side of Eq.(13).] With µo= 4p×10−7 henry/meter, q =1.6 ×10−19 C, 
m = 0.911 ×10−30 Kg, and c = 3 ×108 m/s, the numerical value of γ  turns out to be 
Γωo

2 = 6.25 ×10−24ωo
2 hertz. 

One problem with the above model is that the damping coefficient γ , which must be a 
constant if the linear system is to be time-invariant, varies with the oscillation frequency ω. Thus 
the damped oscillator cannot be modeled as a time-invariant system and, strictly speaking, 
Eq.(13) cannot be expected to hold for anything other than sinusoidal excitations of the dipole. 
Of course, if the range of oscillation frequencies involved in any particular excitation is 
sufficiently narrow, one may expect the differential equation to remain approximately valid 
provided that γ  is set to a constant value by fixing ω at the center frequency of the oscillations. 
In particular, the impulse-response of the dipole, which typically has a narrow spectrum, may be 
obtained from Eq.(13) in the usual way. This impulse-response then represents the spontaneous 
emission of a photon when an atom goes from an excited state to a lower-energy state. The 
impulse-response is given by p(t) = poexp(−½γ t)sin(√ωo

2−¼γ 2 t) Step(t), with γ being fixed at 
2
o ,Γω  where 2 24

o /(6 ) 6.25 10 sec.q mcΓ mπ  −= ≈ ×  The natural line-width is thus seen to be 
∆ω ~Γωo

2. Considering that λ = 2pc/ω, we will have ∆λ ~ 2pc∆ω /ωo
2 = 2pcΓ ≈11.8×10−15 m. 

This is the universal line-width of spontaneous emission according to the classical theory of 
electrodynamics. 

Another problem with Eq.(13) is that its Fourier transform yields 

 
2

ext
2 2

o

( / ) ( )( ) .
i

q m Ep ωω
ω ω γω

=
− −

 (14) 

When the dipole is excited by a delta-function, Eext(t) = δ (t)z^ , we will have Eext(ω) = 1.0, and, 
therefore, 
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2 2

2 2 2 2 2
o

2 ( / )( ) .
( )

| | q mp ω
ω ω γ ω

=
− +

 (15) 

In accordance with Eq.(10), the rate of energy radiation (i.e., energy output per unit time) by 
an oscillating dipole pocos(ωt)z^  is given by µopo

2ω4/(12pc). The total radiated energy of 
spontaneous emission must, therefore, be proportional to ∫0

∞
|p(ω)|2ω 4dω,1 which is a divergent 

integral. This indicates that the Lorentz model, which associates radiation resistance losses with 
the 1st derivative of dipole oscillations, is fundamentally flawed. A better way to incorporate the 
effects of radiation resistance into the Lorentz oscillator model is by recognizing the term in 
Eq.(7) that is proportional to poω3sin(ω t) as the 3rd derivative of pocos(ωt), in which case the 
differential equation governing the dipole oscillations becomes 

 
3 2

2
o3 2

2
ext

d ( ) d ( ) d ( ) ( ) ( / ) ( ).
d d d

t t t t q m t
t t t

Γ γ ω− + + + =
p p p p E



 (16) 

We have included the term γ dp(t)/dt in the above equation to allow for damping 
mechanisms other than radiation resistance. Note, once again, that our small spherical dipole 
gives rise to a radiation resistance term that is distinct from the externally-applied excitation field 
Eextcos(ω t). In contrast, if the dipole happens to be embedded in a continuous medium, in which 
case the exciting field is the external field plus the collective field of all the dipoles in the 
medium (including the local dipole), then the radiation resistance term −Γ d3p(t)/dt3 should be 
dropped from the Lorentz model of Eq.(16). 

The differential equation incorporating the 3rd derivative of the oscillating dipole has its own 
stability problems. Considering the orders of magnitude of the parameters involved, the 
characteristic equation −Γs3 +s2+γ s +ωo

2 = 0 may be factored as (1−Γs)[s2 +(Γωo
2+γ)s +ωo

2] = 0.2 
While the pair of complex-conjugate roots of this equation are the same as before, the new 
(positive) root, s = 1/Γ, causes exponential growth of the impulse-response (i.e., damped 
oscillations associated with spontaneous emission) and is, therefore, unphysical.  

Including the next higher-order term in the expansion of the internal E-field of the dipole 
oscillator in Eq.(7) does not help with its unphysical behavior either. The 4th order contribution 
to the internal E-field is readily found to be 

 
4 4

(4) 2 4o o
2

2 1
5 35

ˆ ˆˆ ˆ ˆ( , ) ( / ) ( sin ) ( / ) ( 2sin ) cos( ).
12

[ ]P Rt r R r R t
c

µ ω θ θ ω= − + − − −E r z z zθ θ  (17) 

The spherical symmetry of the dipole ensures that the contribution to the Lorentz oscillator 
model of the spatially-averaged 4th order term in Eq.(17) is aligned with the z-axis. Defining the 
new parameter Ω =µoRq2/(16pmc2) ~ 10−42 sec2, the differential equation governing the Lorentz 
oscillator model becomes 

 
4 3 2

2
o4 3 2

2
ext

d ( ) d ( ) d ( ) d ( ) ( ) ( / ) ( ).
d d d d

t t t t t q m t
t t t t

Ω Γ γ ω− + + + =
p p p p p E



 (18) 

To a good approximation, the characteristic equation of the above differential equation may 
be factored as follows: (Ω s2−Γs +1)[s2 +(Γωo

2+γ )s +ωo
2] = 0.2 As before, spontaneous emission 

will exhibit a frequency ωo√ 1−¼(Γωo+γωo
−1)2 and a damping rate ½(Γωo

2+γ ), while the 
remaining roots produce the unstable oscillation 1/2 2exp[( /2 ) ] cos 1 ( /4 ) .[ ]t tΓ Ω Ω Γ Ω− −  This 
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unphysical solution must somehow be countered by the internal dynamics of the atom, as real 
atoms do not exhibit such exploding behavior during spontaneous emission. 

For a phenomenological treatment of spontaneous emission, where the characteristic 
behavior of the standard (i.e., 2nd order) Lorentz oscillator model of Eq.(13) is retained while the 
transition to oscillations in the vicinity of t = 0 is smoothed out to produce a finite amount of 
radiated energy, see Problem 16, Chapter 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Footnote 1: Assume p(ω) is sampled at intervals of ∆ω. The spontaneous emission is then the 
sum of many single-frequency oscillations, whose radiation rates are proportional to 
|p(ωn)|2(∆ω)2ωn

4. The periodic signal obtained by a superposition of discrete frequencies has a 
period of 1/∆ω. Multiplying the radiation rate of each oscillator with the repetition period 1/∆ω 
yields the total radiated energy of the oscillator. The total radiated energy is thus the sum over n 
of |p(ωn)|2ωn

4∆ω  which approaches ∫0
∞

|p(ω)|2ω 4dω  in the limit when ∆ω→ 0. 
 
Footnote 2: The 3rd and 4th order characteristic equations of the Lorentz oscillator model have 
been factored out approximately. Considering the orders of magnitude of the parameters 
involved, these approximations are justifiable. The approximate solutions obtained upon 
factorization may be further improved by the following method. Let So be an approximate 
solution of the characteristic equation, and assume that (1 +α)So, where α  is a small (real or 
complex) number, is the exact solution. Substitute (1 +α)So in the characteristic equation, then 
use the approximation (1 +α)n≈1 + nα to linearize the resulting equation. You will find an 
expression for α, which corresponds to a more accurate solution than So, provided, of course, 
that the magnitude of the computed α  is well below unity. 


