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Problem 6.8)
a) Energy density = Nf;io d€ = Nf;iOE ~dp = ;ZOE -dP = f;iOE -d[e, X(0)E]

E
= &, 2(0) [° E - dE = Yhe, X(0)E?| ° = Yhe, X(0)E3. (1)

In the above equation, N is the number of dipoles per unit volume, and, as usual, P = Np.
Note that X(0) = Ng?/(me,wd) = Nq?/(e,a), where «a is the spring constant. Consequently,

Energy density = % N(qE,)?/a. ()

In the steady state, gE, = ad, where d is the length of the dipole. In other words, the force
of the E-field acting on the negative charge, —qE), is balanced by the force of the spring (spring
constant = a) exerted on the negative charge when the length of the spring is d. The energy
density stored within the springs is thus given by %Nad?. This is readily recognized as the
potential energy of N springs, each having a constant a and stretched to length d.

b) Total energy density = E-field’s energy density + Dipoles’ energy density
= Y& B3 + Yoeo X (0)EE = Yoe,[1 + X(0)]EZ = Yoe,e(0)EE. 3)

¢) Energy density per unit volume of dipoles = | ;2 g os@tteo) g gp

= & X(w) f:ﬁ;os(wH%)E -dE

= Yse, X(w)EF cos?(wt + @o). 4)

The above expression yields the time-dependent energy-density of the dipoles. The dipoles
gain internal energy when elongated under the influence of the E-field. When the E-field returns
to zero, the dipoles shrink, returning their internal energy to the system in the form of radiation.

Total energy density = Y¢e,EZ cos?(wt + ¢q) + Ve, X(w)EE cos?(wt + @)
= Ysoe,e(w)EE cos?(wt + ¢g).

=  Time averaged energy density = Ye,e(w)|E,|?. (5)

Digression: In response to the E-field E(t) = EyX cos(wt + ¢,), a single dipole will oscillate with frequency w,
the distance between its +q charges being x(t) = x, cos(wt + ¢@,). The oscillation amplitude x, is given by
Eq.(2b) of Chapter 6 (y = 0 in the absence of dissipative losses). The oscillating dipole’s mechanical energy will
then be given by the sum of its kinetic and potential energies, as follows:

Eaipote (1) = E () + E,() = Yomv?(t) + Yeax?(t) = Yamx§w? sin®(wt + @,) + Yeax§ cos®(wt + ¢@q)
= Yomxiw? + Yom(wi — w?)xE cos*(wt + @)

q%/m

2_ 2
w§—w

= Yomxiw? + ¥ ( )E,?O cos?(wt + ¢@g). (6)

Multiplying both sides of Eq.(6) by the number-density N of the dipoles, we find the total mechanical energy-
density associated with the dipoles to be



E(t) = YbBNmxZw? + Ye, X (w)E?, cos?(wt + ¢,). (7)

The first term on the right-hand side of the above equation is a (time-independent) background energy
representing the mechanical energy-density imparted to the dipoles when the exciting field is initially established
within the host medium; this term has been ignored in our derivation of the energy-density of the dipoles in part (c).
The second term appearing on the right-hand side of Eq.(7) represents the continually exchanged energy-density
between the E-field and the dipoles. This latter term, of course, is the same expression that was derived in Eq.(4).

t ’
d) Dipoles’energy density = f;z(?E -dP = f E(t)- dz(tt, '
t

=0

= g,E¢ fot[sin(wlt’) — sin(w,t")][wi X (w,) cos(wt’) — wx(w,) cos(w,t’)]dt’

= g,E¢ fot[wl)(l sin(w;t") cos(wyt") + w,x, sin(w,t") cos(w,t")
—wq )1 Sin(w,t") cos(w,t") — w,x, sin(w,t") cos(w,t")]dt’
= Yoe Ef {fot[wl)(l sin(2wqt") + w,x, sin(2w,t’") 1dt’
t : ! : ! !
— [, o {sin[(w; + w)t'] = sin[(w; — wp)t'T}dt

— J; waxa{sin[(w; + w)t'] + sin[(w; — wp)t'T}dt’}

Yoeo E3{[—Y5X1 cos(2wqt") — YaX; cos(2w,t]
+H(@it1 + @222) /(@1 + w2)] cos[(wy + w,)t']
—[(w2x2 — @11/ (@5 — w1)] cos[(wy — w,)t']}
= Yoe  EE{—Y5X; cos(RQw,t) + YoX; — YaX, cos(Rw,t) + YaX,
+H[(@it1 + @2x2) /(@1 + ) {cos[(w; + wp)t] — 1}
~[(@222 = w101) /(@5 — 1) [{cos[(w; — wp)t] — 13}, (®)

Note that cos(2w;t) = cos[(2m — 1)(Aw)t] has an integer number of periods between
t =0andt =T = 2n/Aw; therefore, time-averaging over the interval [0, T] eliminates the term
containing cos(2w;t). Similarly, cos(2w,t) = cos[(2m + 1)(Aw)t] vanishes upon averaging.
The same is true of cos[(w; + w,)t] = cos[2m(Aw)t] and cos[(w; — w,)t] = cos[(Aw)t].
Consequently,

Time-averaged energy density of dipoles over the interval [0, T]

= Yoeo Eg{YoX1 + YoXz — [(wixs + w2x2) /(w1 + w)] + [(wox2 — w1x1) /(W — w1)]}

= e E2 [X(w1)+x(wz) _ (m-%)Awx(w1) + (M+¥)AwX (wz) n (m+¥%)Awx(wy) — (m—l/z)AwX(wl)]
0™~0 2 2mAw Aw
_ 1/260E§ [X(wll;i((wz) n X(wl);rx(wz) + (mAw) X(wz)A—wX(wl)]. 9)



In the limit when Aw — 0, we will have m > 1, in which case the first term on the right-
hand side of Eq.(9) may be ignored. Denoting by w, the central frequency %2(w; + w,) = mAw,
we now write the time-averaged energy-density of the dipoles as follows:

(Dipoles’ energy density) = Y EZ | x(w,) + w, dﬁg‘)) ] (10)
w=w
Next, we compute the time-averaged E-field energy density over the interval [0, T], that is,
2 _ 80502 Tp . . 2
(Yoe E2 (b)) = 7f0 [sin(w,t) — sin(w,t)]?dt
= g"EO f [sin?(w4t) + sin?(w,t) — 2 sin(w,t) sin(w,t)]dt
= E°E° f {14[1 — cosQw,t)] + ¥%[1 — cos(2w,t)]
+ cos[(w; + w,)t] — cos[(w; — wy)t]}dt

= e, EZ2. (11)

We thus find: (Total energy density) = (E field energy density) + (Dipoles’ energy density)

= Yag E2[1 + x(w.) + weX' ()]

Yaegole(we) + wee' (w)]ES

1 [we(w)]
72€ ( dw

) )Eg. (12)

Noting that the time-averaged E-field intensity over the beat period T is (E?(t)) = EZ, we have

dlwe(w)]
d

(Total energy density associated with E field) = %¢, ( ) (E2(1)). (13)
We

Digression: As a check on the above result, consider a quasi-monochromatic plane-wave having E-field amplitude
E,x, H-field amplitude H,y = n(w)E,y/Z,, propagating in a transparent, dispersive, non-magnetic medium of
refractive index n(w) = \/ s(w) = \/ 1 + ¥(w). We will have

(E field energy density) + (H field energy density) = Yag,[e(w) + we'(w)]EZ + Yap HE

we'(w)

2n(w)
2z0c (@) +wn "(@)ES = (S} V- (14)

=Yg, [e(w) + we' (w) + n?(w)]EZ = Yoeyn(w) [n(w) +—

n(a))
In words, the average EM energy-density, when multiplied by the group velocity V; = c/ng(w) =

c/[n(w) + wn'(w)] = ¢/[wn(w)]’ yields the time-averaged component (S,) of the Poynting vector along the
direction of propagation, as it should.




