Problem 6.7)

a) Invoking Gauss's law, $\nabla \cdot \mathbf{E} = \rho/\varepsilon_0$, together with the fact that the E-field inside a metallic plate is zero, pillboxes I and II enable us to determine \mathbf{E}_1 and \mathbf{E}_2 as $\mathbf{E}_1 = \mathbf{E}_2 = -(\sigma_0/\varepsilon_0)\hat{\mathbf{z}}$.

b) The bound electric charge-densities at the upper and lower facets of the dielectric slab are obtained from the relation $\rho_{\text{bound}}^{(e)} = -\nabla \cdot \mathbf{P}$ as $\sigma = P$. (Both σ and P have units of coulomb/m².) The linearity of **P** in relation to the E-field now allows one to write $\sigma = P = \varepsilon_0 \chi E_3$.

c) Use pillbox III in conjunction with Gauss's law and the fact that the E -field inside the metallic conductor is zero to obtain $\mathbf{E}_3 = -(\sigma_0 - \sigma)\hat{\mathbf{z}}/\varepsilon_0$. Next substitute for σ in terms of E_3 to find

$$
E_3 = (\sigma_0 - \varepsilon_0 \chi E_3)/\varepsilon_0 \rightarrow (1 + \chi)E_3 = \sigma_0/\varepsilon_0 \rightarrow E_3 = -\sigma_0 \hat{\mathbf{z}}/[\varepsilon_0(1 + \chi)].
$$

d) Inside the dielectric slab, $\mathbf{D}_3 = \varepsilon_0 \mathbf{E}_3 + \mathbf{P} = \varepsilon_0 \mathbf{E}_3 + \varepsilon_0 \chi \mathbf{E}_3 = \varepsilon_0 (1 + \chi) \mathbf{E}_3$. With reference to pillbox III, since the D -field inside the metallic plate is zero, and since the free charges contained within the pillbox have a surface charge-density σ_0 , Gauss's law $\nabla \cdot \mathbf{D} = \rho_{\text{free}}$ implies that $\mathbf{D}_3 = -\sigma_0\hat{\mathbf{z}}$, which yields the same expression for \mathbf{E}_3 as that obtained in part (c).

In the free-space regions of the gap, $\mathbf{D} = \varepsilon_0 \mathbf{E}$ (because $\mathbf{P} = 0$), and the application of Gauss's law to pillboxes I and II yields $D_1 = D_2 = -\sigma_0\hat{z}$, yielding $E_1 = E_2 = -(\sigma_0/\varepsilon_0)\hat{z}$, as was found in part (a).

e) Voltage =
$$
V_{\text{top}} - V_{\text{bottom}} = \int_{\text{top}}^{\text{bottom}} \mathbf{E} \cdot d\mathbf{\ell} = E_1 d_1 + E_2 d_2 + E_3 d_3
$$

\n
$$
= (\sigma_0 / \varepsilon_0) (d_1 + d_2) + \sigma_0 d_3 / [\varepsilon_0 (1 + \chi)]
$$
\n
$$
= (\sigma_0 / \varepsilon_0) (d_1 + d_2 + \frac{d_3}{1 + \chi}).
$$
\nf) $C = \frac{\partial}{\partial V} = \frac{\sigma_0 A}{(\sigma_0 / \varepsilon_0) [d_1 + d_2 + d_3 / (1 + \chi)]} = \frac{\varepsilon_0 A}{d_1 + d_2 + [d_3 / (1 + \chi)]}.$

In the absence of the dielectric slab, $\chi = 0$ and $C = \varepsilon_0 A/(d_1 + d_2 + d_3)$. Considering that $x > 0$, the presence of the slab reduces the effective gap (by dividing d_3 by $1 + \chi$), thus *increasing* the capacitance C .

g) In general, the electrical power delivered to the capacitor is $p(t) = V(t)I(t)$. Therefore,

$$
\text{Delivered Energy} = \int_0^\infty V(t)I(t)dt = C \int_0^\infty V(t) \, dV(t) = \left. \frac{1}{2}CV^2(t) \right|_{t=0}^\infty = \frac{1}{2}CV^2(\infty)
$$
\n
$$
= \frac{1}{2}C(Q/C)^2 = \frac{Q^2}{2C}.
$$

h) Using the expression for the capacitance C found in part (f) , we write

Delivered Energy = Stored Energy =
$$
\frac{Q^2}{2\varepsilon_0 A} \left(d_1 + d_2 + \frac{d_3}{1+\chi} \right)
$$

\n
$$
= \frac{1}{2\varepsilon_0 A} \left(\frac{Q}{\varepsilon_0 A} \right)^2 \left(d_1 + d_2 + \frac{d_3}{1+\chi} \right)
$$

\n
$$
= \frac{1}{2\varepsilon_0 A d_1 (\sigma_0/\varepsilon_0)^2 + \frac{1}{2\varepsilon_0 A d_2} (\sigma_0/\varepsilon_0)^2 + \frac{1}{2\varepsilon_0 A d_3} (1+\chi) \left[\frac{\sigma_0}{\varepsilon_0 (1+\chi)} \right]^2
$$

\n
$$
= \frac{1}{2\varepsilon_0 |E_1|^2 A d_1 + \frac{1}{2\varepsilon_0 |E_2|^2 A d_2} + \frac{1}{2\varepsilon_0} (1+\chi) |E_3|^2 A d_3.
$$

Now, Ad_1 , Ad_2 , and Ad_3 are the volumes of the three regions of space between the capacitor plates. Within the air-gaps, the energy-densities are $\frac{1}{2}\epsilon_0 |\mathbf{E}_1|^2$ and $\frac{1}{2}\epsilon_0 |\mathbf{E}_2|^2$. The remaining energy is contained in the dielectric slab, and is proportional to its volume $Ad₃$. Consequently, the density of the E-field energy within the slab must be $\frac{1}{2}\varepsilon_0(1+\chi)|E_3|^2$.

Note: The above expression for the E-field energy-density within a dielectric medium is valid only for dispersionless media, that is, media for which the frequency-dependence of $\chi(\omega)$ can be ignored. When the local variations of $\chi(\omega)$ with ω are significant (i.e., $d\chi(\omega)/d\omega \neq 0$), the energy-density expression must be modified to account for the medium's dispersive properties.