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Solutions Opti 501 1/2 
 
Problem 6.7) 

a) Invoking Gauss’s law, 𝜵𝜵 ∙ 𝑬𝑬 = 𝜌𝜌 𝜀𝜀o⁄ , together with the fact that the 𝐸𝐸-field inside a metallic 
plate is zero, pillboxes I and II enable us to determine 𝑬𝑬1 and 𝑬𝑬2 as 𝑬𝑬1 = 𝑬𝑬2 = −(𝜎𝜎0 𝜀𝜀o⁄ )𝒛𝒛�. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) The bound electric charge-densities at the upper and lower facets of the dielectric slab are 
obtained from the relation 𝜌𝜌bound

(𝑒𝑒) = −𝜵𝜵 ∙ 𝑷𝑷 as 𝜎𝜎 = 𝑃𝑃. (Both 𝜎𝜎 and 𝑃𝑃 have units of coulomb/m2.) 
The linearity of 𝑷𝑷 in relation to the 𝐸𝐸-field now allows one to write 𝜎𝜎 = 𝑃𝑃 = 𝜀𝜀o𝜒𝜒𝐸𝐸3. 

c) Use pillbox III in conjunction with Gauss’s law and the fact that the 𝐸𝐸-field inside the metallic 
conductor is zero to obtain 𝑬𝑬3 = − (𝜎𝜎0 − 𝜎𝜎)𝒛𝒛� 𝜀𝜀o⁄ . Next substitute for 𝜎𝜎 in terms of 𝐸𝐸3 to find 

 𝐸𝐸3 = (𝜎𝜎0 − 𝜀𝜀o𝜒𝜒𝐸𝐸3) 𝜀𝜀o⁄    →     (1 + 𝜒𝜒)𝐸𝐸3 = 𝜎𝜎0 𝜀𝜀o⁄    →    𝑬𝑬3 = −𝜎𝜎0𝒛𝒛� [𝜀𝜀o(1 + 𝜒𝜒)]⁄ . 

d) Inside the dielectric slab, 𝑫𝑫3 = 𝜀𝜀o𝑬𝑬3 + 𝑷𝑷 = 𝜀𝜀o𝑬𝑬3 + 𝜀𝜀o𝜒𝜒𝑬𝑬3 = 𝜀𝜀o(1 + 𝜒𝜒)𝑬𝑬3. With reference to 
pillbox III, since the 𝐷𝐷-field inside the metallic plate is zero, and since the free charges contained 
within the pillbox have a surface charge-density 𝜎𝜎0, Gauss’s law 𝜵𝜵 ∙ 𝑫𝑫 = 𝜌𝜌free implies that 
𝑫𝑫3 = −𝜎𝜎0𝒛𝒛�, which yields the same expression for 𝑬𝑬3 as that obtained in part (c). 

In the free-space regions of the gap, 𝑫𝑫 = 𝜀𝜀o𝑬𝑬 (because 𝑷𝑷 = 0), and the application of 
Gauss’s law to pillboxes I and II yields 𝑫𝑫1 = 𝑫𝑫2 = −𝜎𝜎0𝒛𝒛�, yielding 𝑬𝑬1 = 𝑬𝑬2 = −(𝜎𝜎0 𝜀𝜀o⁄ )𝒛𝒛�, as 
was found in part (a). 

e) Voltage = 𝑉𝑉top − 𝑉𝑉bottom = ∫ 𝑬𝑬 ∙ d𝓵𝓵bottom

top
= 𝐸𝐸1𝑑𝑑1 + 𝐸𝐸2𝑑𝑑2 + 𝐸𝐸3𝑑𝑑3 

 = (𝜎𝜎0 𝜀𝜀o⁄ )(𝑑𝑑1 + 𝑑𝑑2) + 𝜎𝜎0𝑑𝑑3 [𝜀𝜀o(1 + 𝜒𝜒)]⁄  
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In the absence of the dielectric slab, 𝜒𝜒 = 0 and 𝐶𝐶 = 𝜀𝜀o𝐴𝐴 (𝑑𝑑1 + 𝑑𝑑2 + 𝑑𝑑3)⁄ . Considering that 
𝜒𝜒 > 0, the presence of the slab reduces the effective gap (by dividing 𝑑𝑑3 by 1 + 𝜒𝜒), thus 
increasing the capacitance 𝐶𝐶. 

g) In general, the electrical power delivered to the capacitor is 𝓅𝓅(𝑡𝑡) = 𝑉𝑉(𝑡𝑡)𝐼𝐼(𝑡𝑡). Therefore, 

 Delivered Energy = ∫ 𝑉𝑉(𝑡𝑡)𝐼𝐼(𝑡𝑡)d𝑡𝑡∞
0 = 𝐶𝐶 ∫ 𝑉𝑉(𝑡𝑡)d𝑉𝑉(𝑡𝑡)∞

0 = ½𝐶𝐶𝑉𝑉2(𝑡𝑡)|𝑡𝑡=0
∞ = ½𝐶𝐶𝑉𝑉2(∞) 

 = ½𝐶𝐶(𝑄𝑄 𝐶𝐶⁄ )2 = 𝑄𝑄2 (2𝐶𝐶)⁄ . 

h) Using the expression for the capacitance 𝐶𝐶 found in part (f ), we write 

 Delivered Energy = Stored Energy = 𝑄𝑄2
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 = ½𝜀𝜀o|𝑬𝑬1|2𝐴𝐴𝑑𝑑1 + ½𝜀𝜀o|𝑬𝑬2|2𝐴𝐴𝑑𝑑2 + ½𝜀𝜀o(1 + 𝜒𝜒)|𝑬𝑬3|2𝐴𝐴𝑑𝑑3. 

Now, 𝐴𝐴𝑑𝑑1, 𝐴𝐴𝑑𝑑2, and 𝐴𝐴𝑑𝑑3 are the volumes of the three regions of space between the 
capacitor plates. Within the air-gaps, the energy-densities are ½𝜀𝜀o|𝑬𝑬1|2 and ½𝜀𝜀o|𝑬𝑬2|2. The 
remaining energy is contained in the dielectric slab, and is proportional to its volume 𝐴𝐴𝑑𝑑3. 
Consequently, the density of the 𝐸𝐸-field energy within the slab must be ½𝜀𝜀o(1 + 𝜒𝜒)|𝑬𝑬3|2. 

Note: The above expression for the 𝐸𝐸-field energy-density within a dielectric medium is valid 
only for dispersionless media, that is, media for which the frequency-dependence of 𝜒𝜒(𝜔𝜔) can be 
ignored. When the local variations of 𝜒𝜒(𝜔𝜔) with 𝜔𝜔 are significant (i.e., d𝜒𝜒(𝜔𝜔) d𝜔𝜔⁄ ≠ 0), the 
energy-density expression must be modified to account for the medium’s dispersive properties. 
 


