Problem 1) The volume of interest is $d\Delta s \cos \theta$, of which one half is to the left and one half to the right of the surface element Δs . Any dipole whose center point is within this volume contributes a charge +q to one side of the surface element and a charge -q to the other side. The number of dipoles having the orientation angle θ within this volume is $(d\Delta s \cos \theta)N(\theta)d\theta$, their contribution to charges accumulated on the left-hand-side being

 $\Delta Q = -q(d\Delta s\cos\theta)N(\theta)d\theta = -\mathbf{p}\cdot\Delta s\,N(\theta)d\theta.$

To find the charge Q contributed by all dipoles we must integrate over θ from 0 to π . Thus $Q = -(\int_{0}^{\pi} p N(\theta) d\theta) \cdot \Delta s = -\mathbf{P} \cdot \Delta s$, where \mathbf{P} is the polarization density of the medium. (The charge accumulated on the right-hand side of the surface element Δs is $+\mathbf{P} \cdot \Delta s$.) If we now consider a small cube and compute the total charge inside the cube it will be the sum of $-\mathbf{P} \cdot \Delta s$ over all six surfaces of the cube. Normalization by the volume of the cube yields $\rho = -\nabla \cdot \mathbf{P}$.