Opti 501

Solutions

5-52) a) $J(\mathbf{r}, t) = I_0 \delta(r_{\parallel} - R) \delta(z) \hat{\boldsymbol{\phi}}$. Note that each δ -function has units of 1/m. Therefore, the units of $J(\mathbf{r}, t)$ are ampere/m², as they should be.

b) In cylindrical coordinates, we have

$$\boldsymbol{\nabla} \cdot \boldsymbol{J}(\boldsymbol{r},t) = \frac{\partial (r_{\parallel}J_{r_{\parallel}})}{r_{\parallel}\partial r_{\parallel}} + \frac{\partial J_{\phi}}{r_{\parallel}\partial \phi} + \frac{\partial J_{z}}{\partial z} = \frac{\partial [I_{0}\delta(r_{\parallel}-R)\delta(z)]}{r_{\parallel}\partial \phi} = 0.$$

Consequently, $\partial \rho(\mathbf{r}, t)/\partial t = 0$. This indicates that the charge-density can have any arbitrary distribution throughout space so long as it does *not* vary with time. Any constant (i.e., time-independent) charge distribution is therefore allowed.