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Opti 501 Solutions 1/1 
 
Problem 5.50) a) The symmetry of the problem dictates that the potential be a function of the 
radial distance 𝜌𝜌 = �𝑥𝑥2 + 𝑦𝑦2 from the wire. At an observation point located in the 𝑥𝑥𝑦𝑦-plane at a 
distance 𝜌𝜌 from the origin, we will have 
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The first term on the right-hand-side of the above expression is infinitely large, but it does 
not vary with ρ and may, therefore, be ignored. The scalar potential is thus given by 

ψ (ρ) = −(λo/2πεo)lnρ. 
 
b) Since E = −∇ψ, we investigate the gradient of the neglected function ln(z0+√ρ 2 + z0

2) in the 
limit when z0→∞, to see if it has any dependence on the radial distance ρ. We find 
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Thus, for any finite value of ρ, in the limit when z0→∞, the denominator of the above 
expression approaches 2, while the numerator approaches zero. It is thus clear that, for 
sufficiently large z0, the contribution to the E-field of ln(z0+√ρ 2 + z0

2) at any finite radial 
distance ρ is negligibly small. 
 
c) The calculation of A(ρ) follows essentially the same steps as the above calculation of ψ (ρ). We 
will have 
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Ignoring the first term on the right-hand-side of the above equation, we find the vector 
potential of the wire to be A(ρ) = − (µoIoz^/2π)lnρ . 

ρ =√ x2 + y2 


