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Problem 5.47) 

a) ( , ) 0,t⋅ =D r∇   

 ( , ) ( , )/ ,t t t∂ ∂× =H r D r∇   

 1
o o o o o( , ) ( , )/ ( ) ( / ) /t t t t t∂ ∂ ε ε ∂ ∂ ε µ ε ∂ ∂−× = − → × = − − × −E r B r E + P M P H∇ ∇ ∇   

 ( ) 1
bo

( )
o bound o und oo( , ) ( , ) / ,/ mmt t t t∂µ ε ∂ ∂ εε ∂ −→ × = − ← = −− ×D Pr J J MH r∇ ∇  

 ( )
o boun

( )
boundd( , ) 0 ( , ) ( , ).m mt t tρµ ρ⋅ = → ⋅ = ← =− ⋅H r MB rr∇ ∇ ∇  

 
b) Since Maxwell’s 1st equation ensures that ∇ ·D = 0, we define the magnetic vector potential 
A(m)(r,t) such that D(r,t) = −∇ ×A(m)(r,t). Substitution into Maxwell’s 2nd equation yields 
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c) Using the above magnetic potentials, Maxwell’s 3rd equation may be written as follows: 
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Clearly, eliminating ψ (m) from the above equation requires the same gauge for the magnetic 
potentials as the Lorenz gauge that was defined for the electric potentials, that is, 
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d) Maxwell’s 3rd equation in conjunction with the Lorenz-equivalent gauge now becomes 
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This wave equation for the magnetic vector potential, having ( )
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mε J  for the source term,  is the 
counterpart of the equation for the standard vector potential, where the source term is ( )
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The wave equation for ( )( , )m tψ r  could similarly be derived by substituting into Maxwell’s 
4th equation the expressions that relate D and H to A(m) and ψ (m). The final result, after taking 
account of the Lorenz-equivalent gauge, is 
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Once again we have an equation similar to the standard wave equation for the (electric) 
scalar potential, except that the source term here is 1 ( )
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e) By analogy with the standard wave equation, we write the solutions to the preceding wave 
equations for magnetic potentials as follows: 

ρ free(r, t) is set to zero. 

Jfree(r, t) is set to zero. 

Because∇ ×∇ψ (m) = 0. 

Equivalent of Lorenz gauge 
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