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b) Since the wire has no charge and no current, both its scalar and vector potentials must be zero.
¢) In the absence of charge and current, there will be no electric and no magnetic fields.

A M(r,t) = mes()8(GNZ — JO 0= 1oV x M = u3'my[6(x)8' ()X — 8’ ()8()F].

Since the wire has no electric charges, its scalar potential is zero, that is, Y (r,t) = 0. As for
vector potential, since the electric current is constant in time, the wire’s vector potential will be
time-independent. We thus write
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Considering that the scalar potential is zero and the vector potential is time-independent, the
E-field surrounding the magnetic wire is found to be zero, that is, E(r,t) = —Viy — dA/dt = 0.
As for the magnetic field, the curl of A(r) can be readily calculated in cylindrical coordinates
and seen to be zero everywhere, except, along the z-axis, where A(r) is singular. Using the
definition of the curl operator in the vicinity of the z-axis, we find that B(r,t) =V X A =
my6(x)8(y)Zz. This, of course, is a consequence of the fact that, by definition, B = uoH + M,

and that, in the absence of magnetic charges, i.e., p(m) = —V-M = 0, the H-field everywhere
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is zero. Consequently, the B-field exists only within the wire, where B = M = my6(x)6(y)Z2.

Digression: An alternative means of calculating the magnetic wire’s vector potential is the
Fourier method, namely,
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_ mo¢ ¢ J1 () is Bessel function
= f Ji(kyp)dky = T of first kind, 1* order.

This, of course, is the same solution for the vector potential as was obtained before.
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