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Problem 5.45) 

a) 𝑷𝑷(𝒓𝒓, 𝑡𝑡) = 𝑝𝑝0𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝒛𝒛�       →       𝜌𝜌bound
(e) = −𝜵𝜵 ∙ 𝑷𝑷 = −𝜕𝜕𝑃𝑃𝑧𝑧

𝜕𝜕𝜕𝜕
= 0    and    𝑱𝑱bound

(e) = 𝜕𝜕𝑷𝑷
𝜕𝜕𝜕𝜕

= 0. 

b) Since the wire has no charge and no current, both its scalar and vector potentials must be zero. 

c) In the absence of charge and current, there will be no electric and no magnetic fields. 

d) 𝑴𝑴(𝒓𝒓, 𝑡𝑡) = 𝑚𝑚0𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝒛𝒛�    →    𝑱𝑱bound
(e) = 𝜇𝜇0−1𝜵𝜵 × 𝑴𝑴 = 𝜇𝜇0−1𝑚𝑚0[𝛿𝛿(𝑥𝑥)𝛿𝛿′(𝑦𝑦)𝒙𝒙� − 𝛿𝛿′(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝒚𝒚�]. 

Since the wire has no electric charges, its scalar potential is zero, that is, 𝜓𝜓(𝒓𝒓, 𝑡𝑡) = 0. As for 
vector potential, since the electric current is constant in time, the wire’s vector potential will be 
time-independent. We thus write 

 𝑨𝑨(𝒓𝒓) = 𝜇𝜇0
4𝜋𝜋
� 𝑱𝑱bound

(e) (𝒓𝒓�)
|𝒓𝒓 − 𝒓𝒓�| 𝑑𝑑𝑥𝑥�𝑑𝑑𝑦𝑦�𝑑𝑑𝑧̃𝑧

∞

−∞
= 𝑚𝑚0

4𝜋𝜋
� 𝛿𝛿(𝑥𝑥�)𝛿𝛿′(𝑦𝑦�)𝒙𝒙� − 𝛿𝛿′(𝑥𝑥�)𝛿𝛿(𝑦𝑦�)𝒚𝒚�

�(𝑥𝑥−𝑥𝑥�)2+(𝑦𝑦−𝑦𝑦�)2+(𝑧𝑧−𝑧𝑧�)2
𝑑𝑑𝑥𝑥�𝑑𝑑𝑦𝑦�𝑑𝑑𝑧̃𝑧

∞

−∞
 

 = 𝑚𝑚0
4𝜋𝜋
� (−𝑦𝑦𝒙𝒙� + 𝑥𝑥𝒚𝒚�)

[𝑥𝑥2+𝑦𝑦2+(𝑧𝑧−𝑧𝑧�)2]3 2⁄ 𝑑𝑑𝑧̃𝑧
∞

−∞
= 𝑚𝑚0(−𝑦𝑦𝒙𝒙� + 𝑥𝑥𝒚𝒚�)

4𝜋𝜋(𝑥𝑥2+𝑦𝑦2) � 𝑑𝑑𝑧𝑧�
�𝑥𝑥2+𝑦𝑦2 {1+[(𝑧𝑧−𝑧𝑧�) �𝑥𝑥2+𝑦𝑦2⁄  ]2}3 2⁄

∞

−∞
 

 = 𝑚𝑚0(−𝑦𝑦𝒙𝒙� + 𝑥𝑥𝒚𝒚�)
4𝜋𝜋(𝑥𝑥2+𝑦𝑦2) � 𝑑𝑑𝑑𝑑

(1+𝜁𝜁2)3 2⁄

∞

−∞
= 𝑚𝑚0𝝓𝝓�

4𝜋𝜋�𝑥𝑥2+𝑦𝑦2
 𝜁𝜁
�1+𝜁𝜁2

�
−∞

∞
= 𝑚𝑚0𝝓𝝓�

2𝜋𝜋𝜋𝜋
 

Considering that the scalar potential is zero and the vector potential is time-independent, the 
𝐸𝐸-field surrounding the magnetic wire is found to be zero, that is, 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = −𝜵𝜵𝜓𝜓 − 𝜕𝜕𝑨𝑨 𝜕𝜕𝑡𝑡⁄ = 0. 
As for the magnetic field, the curl of 𝑨𝑨(𝒓𝒓) can be readily calculated in cylindrical coordinates 
and seen to be zero everywhere, except, along the 𝑧𝑧-axis, where 𝑨𝑨(𝒓𝒓) is singular. Using the 
definition of the curl operator in the vicinity of the 𝑧𝑧-axis, we find that 𝑩𝑩(𝒓𝒓, 𝑡𝑡) = 𝜵𝜵 × 𝑨𝑨 =
𝑚𝑚0𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝒛𝒛�. This, of course, is a consequence of the fact that, by definition, 𝑩𝑩 = 𝜇𝜇0𝑯𝑯 + 𝑴𝑴, 
and that, in the absence of magnetic charges, i.e., 𝜌𝜌bound

(m) = −𝜵𝜵 ∙ 𝑴𝑴 = 0, the 𝐻𝐻-field everywhere 
is zero. Consequently, the 𝐵𝐵-field exists only within the wire, where 𝑩𝑩 = 𝑴𝑴 = 𝑚𝑚0𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝒛𝒛�. 

Digression: An alternative means of calculating the magnetic wire’s vector potential is the 
Fourier method, namely, 

 𝑴𝑴(𝒌𝒌,𝜔𝜔) = ∫ 𝑴𝑴(𝒓𝒓, 𝑡𝑡) exp[−i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)] 𝑑𝑑𝒓𝒓𝑑𝑑𝑑𝑑∞
−∞  

 = ∫ 𝑚𝑚0𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝒛𝒛� exp[−i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)] 𝑑𝑑𝒓𝒓𝑑𝑑𝑑𝑑∞
−∞ = (2𝜋𝜋)2𝑚𝑚0𝛿𝛿(𝑘𝑘𝑧𝑧)𝛿𝛿(𝜔𝜔)𝒛𝒛�. 

 𝑱𝑱bound
(e) (𝒌𝒌, 𝜔𝜔) = i𝒌𝒌 × 𝜇𝜇0−1𝑴𝑴(𝒌𝒌,𝜔𝜔) = (2𝜋𝜋)2𝜇𝜇0−1𝑚𝑚0𝛿𝛿(𝑘𝑘𝑧𝑧)𝛿𝛿(𝜔𝜔)(i𝒌𝒌 × 𝒛𝒛�). 

 𝑨𝑨(𝒓𝒓, 𝑡𝑡) = 1
(2𝜋𝜋)4 ∫

𝜇𝜇0 𝑱𝑱bound
(e) (𝒌𝒌,𝜔𝜔)

𝑘𝑘2−(𝜔𝜔 𝑐𝑐⁄ )2 exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)] 𝑑𝑑𝒌𝒌𝑑𝑑𝑑𝑑∞
−∞  

 = −�i𝑚𝑚0
4𝜋𝜋2

� 𝒛𝒛� × ∫  𝒌𝒌 𝛿𝛿(𝑘𝑘𝑧𝑧)𝛿𝛿(𝜔𝜔)
𝑘𝑘2−(𝜔𝜔 𝑐𝑐⁄ )2 exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)] 𝑑𝑑𝒌𝒌𝑑𝑑𝑑𝑑∞

−∞  

 = −�i𝑚𝑚0
4𝜋𝜋2

� 𝒛𝒛� × ∫  𝒌𝒌∥ exp�i𝒌𝒌∥∙𝝆𝝆�
𝑘𝑘∥
2 𝑑𝑑𝒌𝒌∥

∞
−∞  

Use sifting 
properties of 
𝛿𝛿(∙) and 𝛿𝛿′(∙). 

Change variable 
to 𝜁𝜁 = 𝑧𝑧 − 𝑧𝑧�

�𝑥𝑥2+𝑦𝑦2
. 

Switch to cylindrical 
coordinates (𝜌𝜌, 𝜙𝜙, 𝑧𝑧). 

𝒌𝒌∥ = 𝑘𝑘𝑥𝑥𝒙𝒙� + 𝑘𝑘𝑦𝑦𝒚𝒚� 
𝝆𝝆 = 𝑥𝑥𝒙𝒙� + 𝑦𝑦𝒚𝒚�  



 2/2 

 = −�i𝑚𝑚0
4𝜋𝜋2

� 𝒛𝒛� × ∫ ∫  (𝑘𝑘∥ cos𝜑𝜑) 𝝆𝝆� exp�i𝑘𝑘∥𝜌𝜌 cos𝜑𝜑�
𝑘𝑘∥
2 𝑘𝑘∥𝑑𝑑𝑑𝑑𝑑𝑑𝑘𝑘∥

2𝜋𝜋
𝜑𝜑=0

∞
𝑘𝑘∥=0

 

 = −�i𝑚𝑚0
4𝜋𝜋2

� (𝒛𝒛� × 𝝆𝝆�) ∫  [∫ cos𝜑𝜑 exp(i𝑘𝑘∥𝜌𝜌 cos𝜑𝜑)𝑑𝑑𝑑𝑑2𝜋𝜋
𝜑𝜑=0 ]∞

𝑘𝑘∥=0
𝑑𝑑𝑘𝑘∥ 

 = 𝑚𝑚0𝝓𝝓�

2𝜋𝜋 ∫ 𝐽𝐽1(𝑘𝑘∥𝜌𝜌)𝑑𝑑𝑘𝑘∥
∞
0 = 𝑚𝑚0𝝓𝝓�

2𝜋𝜋𝜋𝜋
. 

This, of course, is the same solution for the vector potential as was obtained before. 
 

𝐽𝐽1(∙) is Bessel function 
of first kind, 1st order. 


