Problem 5.44) The magnetization distribution $M(r, t)$ does not produce any (bound) electrical charges. Therefore $\rho_{\text{bound}}^{(e)}(r,t) = 0$. The absence of electrical charge implies that the scalar potential (in the Lorenz gauge) is also absent in this problem, that is, $\psi(r, t) = 0$.

Since this is a magnetostatic problem (i.e., the magnetization is time-independent), the bound electric current-density $J_{\text{bound}}^{(e)}(r,t)$ and, consequently, the vector potential $A(r,t)$, will also be time-independent. As a result, we will have $E(r,t) = -\nabla \psi(r,t) - \partial A(r,t)/\partial t = 0$.

a)
$$
J_{\text{bound}}^{(e)}(\mathbf{r},t) = \mu_0^{-1} \nabla \times M(\mathbf{r},t) = \mu_0^{-1} \nabla \times [m_0 \delta(x) \delta(y) \hat{\mathbf{z}}]
$$

$$
= \mu_0^{-1} m_0 [\delta(x) \delta'(y) \hat{\mathbf{x}} - \delta'(x) \delta(y) \hat{\mathbf{y}}]
$$

b) The symmetry of the problem allows us to choose the observation point \bm{r} as an arbitrary point in the xy-plane, where $z = 0$. In other words, $r = x\hat{x} + y\hat{y}$. Also, since the current-density is time independent, the term $t - |r - r'|/c$ can be dropped from the vector potential formula. We will have

$$
A(r) = \frac{\mu_0}{4\pi} \iiint_{-\infty}^{\infty} \frac{I_{\text{bound}}^{(e)}}{|r-r'|} dr' = \frac{m_0}{4\pi} \iiint_{-\infty}^{\infty} \frac{\delta(x')\delta'(y')\hat{x} - \delta'(x')\delta(y')\hat{y}}{\sqrt{(x-x')^2+(y-y')^2+z'^2}} dx'dy'dz'
$$

\n
$$
\frac{\text{Sifting property of}}{\delta(x') \text{ and } \delta(y')} \Rightarrow = \frac{m_0}{4\pi} \left[\hat{x} \iint_{-\infty}^{\infty} \frac{\delta'(y')}{\sqrt{x^2+(y-y')^2+z'^2}} dy'dz' - \hat{y} \iint_{-\infty}^{\infty} \frac{\delta'(x')}{\sqrt{(x-x')^2+y^2+z'^2}} dx'dz' \right]
$$

\n
$$
\frac{\text{Sifting property of}}{\delta'(x') \text{ and } \delta'(y')} \Rightarrow = \frac{m_0}{4\pi} \left[-\hat{x} \int_{-\infty}^{\infty} \frac{y}{(x^2+y^2+z'^2)^{3/2}} dz' + \hat{y} \int_{-\infty}^{\infty} \frac{x}{(x^2+y^2+z'^2)^{3/2}} dz' \right]
$$

\n
$$
= \frac{m_0}{2\pi} (-y\hat{x} + x\hat{y}) \int_{0}^{\infty} \frac{dz'}{(x^2+y^2+z'^2)^{3/2}} = \frac{m_0}{2\pi} (-y\hat{x} + x\hat{y}) \frac{z'}{(x^2+y^2)\sqrt{x^2+y^2+z'^2}} \Big|_{z'=0}^{\infty}
$$

\n
$$
= \frac{m_0}{2\pi} \left(\frac{x\hat{y}-y\hat{x}}{x^2+y^2} \right) = \left(\frac{m_0}{2\pi} \right) \frac{\hat{x} \times (x\hat{x} + y\hat{y})}{x^2+y^2} = \left(\frac{m_0}{2\pi} \right) \frac{\hat{z} \times r}{r^2} = \frac{m_0 \hat{\phi}}{2\pi r} \iff \text{Cylindrical coordinates}
$$

\n
$$
c)
$$

\n
$$
B(r, t) = \nabla \times A(r, t) = -\frac{\partial A}{\partial z} \hat{r} + \frac{\partial (rA
$$

The B -field, and also the H -field, are thus seen to be zero everywhere outside the wire even though the vector potential is not zero. Note that on the z-axis itself, the curl of $A(r)$ is *not* zero. Using the definition of Curl ($\nabla \times$) as the integral of $A(r)$ around a small loop, normalized by the loop area, the B-field inside the wire is readily found to be $m_0\delta(x)\delta(y)\hat{z}$. This is simply the magnetization $M(r)$ of the wire. Considering that $B = \mu_0 H + M$, we conclude that the Hfield inside the wire is zero as well.