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Opti 501 Solutions 1/1 

Problem 5.44) The magnetization distribution 𝑴𝑴(𝒓𝒓, 𝑡𝑡) does not produce any (bound) electrical 
charges. Therefore 𝜌𝜌bound

(𝑒𝑒) (𝒓𝒓, 𝑡𝑡) = 0. The absence of electrical charge implies that the scalar 
potential (in the Lorenz gauge) is also absent in this problem, that is, 𝜓𝜓(𝒓𝒓, 𝑡𝑡) = 0. 

Since this is a magnetostatic problem (i.e., the magnetization is time-independent), the 
bound electric current-density 𝑱𝑱bound

(𝑒𝑒) (𝒓𝒓, 𝑡𝑡) and, consequently, the vector potential 𝑨𝑨(𝒓𝒓, 𝑡𝑡), will 
also be time-independent. As a result, we will have 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = −𝜵𝜵𝜓𝜓(𝒓𝒓, 𝑡𝑡) − 𝜕𝜕𝑨𝑨(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝜕𝜕⁄ = 0. 

a) 𝑱𝑱bound
(𝑒𝑒) (𝒓𝒓, 𝑡𝑡) = 𝜇𝜇0−1𝜵𝜵 × 𝑴𝑴(𝒓𝒓, 𝑡𝑡) = 𝜇𝜇0−1𝜵𝜵 × [𝑚𝑚0𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝒛𝒛�] 

 = 𝜇𝜇0−1𝑚𝑚0[𝛿𝛿(𝑥𝑥)𝛿𝛿′(𝑦𝑦)𝒙𝒙� − 𝛿𝛿′(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝒚𝒚�] 

b) The symmetry of the problem allows us to choose the observation point 𝒓𝒓 as an arbitrary point 
in the 𝑥𝑥𝑥𝑥-plane, where 𝑧𝑧 = 0. In other words, 𝒓𝒓 = 𝑥𝑥𝒙𝒙� + 𝑦𝑦𝒚𝒚�. Also, since the current-density is 
time independent, the term 𝑡𝑡 − |𝒓𝒓 − 𝒓𝒓′| 𝑐𝑐⁄  can be dropped from the vector potential formula. We 
will have 
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c) 𝑩𝑩(𝒓𝒓, 𝑡𝑡) = 𝜵𝜵 × 𝑨𝑨(𝒓𝒓, 𝑡𝑡) = −𝜕𝜕𝐴𝐴𝜙𝜙
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The 𝐵𝐵-field, and also the 𝐻𝐻-field, are thus seen to be zero everywhere outside the wire —
even though the vector potential is not zero. Note that on the 𝑧𝑧-axis itself, the curl of 𝑨𝑨(𝒓𝒓) is not 
zero. Using the definition of Curl (𝜵𝜵 ×) as the integral of 𝑨𝑨(𝒓𝒓) around a small loop, normalized 
by the loop area, the 𝐵𝐵-field inside the wire is readily found to be 𝑚𝑚0𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝒛𝒛�. This is simply 
the magnetization 𝑴𝑴(𝒓𝒓) of the wire. Considering that 𝑩𝑩 = 𝜇𝜇0𝑯𝑯 + 𝑴𝑴, we conclude that the 𝐻𝐻-
field inside the wire is zero as well. 
 

cylindrical coordinates 

Sifting property of 
𝛿𝛿(𝑥𝑥′) and 𝛿𝛿(𝑦𝑦′) 

Sifting property of 
𝛿𝛿′(𝑥𝑥′) and 𝛿𝛿′(𝑦𝑦′) 


