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Problem 5.43)
a)  p(rt) = A,8(x)8(y)Rect (Z)

b) b(r,t) = 4n180f p(r't =|r—7'|/c) dr' = 1 f 208(x")8(v")Rect(z'/2L) dx'dy'dz’
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¢) Introducing the normalized parameters # = r/L and Z = z/L, the above equation may be
written as follows:

W(r,t) = —2onr | Lok | 4220 n{[yaA=22+7+ 1 -2|[VaA+22+7 + 1 +2)|}.
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In the limit when L — oo, both 7 and Z approach zero, and the above equation becomes
Y(r,0) =

The large constant containing In(2L) in the above expression does not contribute to the
gradient of the scalar potential. Therefore, the E-field of the infinitely-long rod is given by

— v = — (5 = P05
E(r) = Vi = (6r)r_2n£0rr'

d) The Fourier transform of the charge-density distribution is given by
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p(k,w) = [ p(r,t) exp[—i(k- T — wt)] drdt
= 218(w)Ao [, exp(—ik,z) dz = 4128 (w) sin(Lk,)/k,.

Since the Fourier-transformed scalar potential is Y (k, w) = &5 p(k, w)/[k? — (w/c)?], its
inverse transform may now be evaluated as follows:

W@, t) = (Zi)4 [ Wk w) expli(k - 7 — wt)] dkdw
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Define k” = kxi + kyj’\
and ) = xX + yy.
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N j {sin[k,(L+2z)]+sin[k,(L—2z)]}+ i{cos[kz(L—z)]—cos[kz(L+z)]}foo k"]O(k"r") dk dk
oo k=0

Ao ® {sin[k,(L+z)]+sin[k,(L—z)]} — i{cos[k,(L+2z)]—cos[k,(L—2)]}
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The terms of the integrand

f k; 1{Sln[k (L+2)]+ Sln[k (L - Z)]}KO(T‘"U( |)dk that contain cosines are odd

(27T)2 functions of k,; therefore,

their integrals vanish.
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This result is identical with that obtained in part (b), which was obtained using direct evaluation
in the spacetime domain.




