Problem 41) The surface charge-density as a function of time is given by

$$
\sigma_{s}(t) = \frac{Q}{4\pi r^{2}(t)} = \frac{R^{2}\sigma_{so}}{[R + a_{o}\sin(\omega_{o}t)]^{2}}.
$$
\n(1)

When the sphere's surface expands/contracts at the velocity $V_s(t) = \dot{r}_s(t) = a_0 \omega_0 \cos(\omega_0 t) \hat{r}$, it produces the current-density

$$
J_{\text{free}}(r,t) = \sigma_s(t) a_o \omega_o \cos(\omega_o t) \delta[r - r_s(t)] \hat{r}.
$$
 (2)

Here $\delta(\cdot)$ is a Dirac delta-function of the radial coordinate *r*.

a) The *E*-field must be oriented along the radial direction \hat{r} , as symmetry of the problem prohibits the field from having $\hat{\theta}$ and $\hat{\phi}$ components. Applying the integral form of Gauss's law to a (concentric) sphere of radius *r* yields

$$
E(r,t) = \begin{cases} \frac{Q}{4\pi\varepsilon_0 r^2}; & r > r_s(t), \\ 0; & r < r_s(t). \end{cases}
$$
 (3)

b) The vector potential $A(r, t)$ must also be oriented along the radial direction, as the current density at the surface of the charged sphere is always radial, and as the contributions along $\hat{\theta}$ and $\hat{\phi}$ of the various current elements to $A(r, t)$ evaluated at a fixed observation point cancel out. Moreover, symmetry does *not* allow the remaining (radial) component, *Ar*, to depend on the angular coordinates θ and ϕ . Thus $A(r, t)$ can only be a function of the radial distance *r*. The curl of such a vector potential, $\nabla \times A_r(r,t) \hat{r}$, is readily seen to be zero. Consequently, the magnetic field everywhere inside and outside the sphere must vanish.

One may also argue that the scalar potential $\psi(r,t)$ must be similarly independent of θ and φ, and that, therefore, the *E*-field, given by

$$
\boldsymbol{E}(\boldsymbol{r},t) = -\boldsymbol{\nabla}\psi(\boldsymbol{r},t) - \partial \boldsymbol{A}(\boldsymbol{r},t)/\partial t = -[\partial \psi(\boldsymbol{r},t)/\partial \boldsymbol{r} + \partial \boldsymbol{A}_r(\boldsymbol{r},t)/\partial t]\hat{\boldsymbol{r}},
$$
(4)

is independent of θ and ϕ , and is aligned with \hat{r} . This, of course, is the same conclusion reached in part (a) based on a direct argument from symmetry.

c) The *E*-field found in part (a) obviously satisfies Maxwell's $1st$ equation. It is also easy to see from Eqs.(1) and (3) that, at the surface of the charged sphere, the discontinuity of the *E*-field is equal to $\sigma_s(t)/\varepsilon_o$.

To satisfy Maxwell's 2^{nd} equation, since $H(r,t) = 0$ and, therefore, $\nabla \times H = 0$ everywhere, we must show that $J_{\text{free}}(r,t)+\varepsilon_0\partial E(r,t)/\partial t=0$. The only points where *E* varies with time are those at the surface of the charged sphere, where the *D*-field jumps discontinuously between zero and $\sigma_s(t)\hat{\mathbf{r}}$; see Eqs.(1) and (3). At these points the local $\varepsilon_0 \partial \mathbf{E}(\mathbf{r},t)/\partial t$ is a Dirac delta-function, namely, $\pm \sigma_s(t)\delta(t-t_0)\hat{r}$, where t_0 is the instant of switching. Assuming the surface charge is confined to a layer of vanishingly small thickness τ , the time needed for the *D*-field to switch

between zero and $\sigma_s(t_0)\hat{r}$ will be $\tau / V_s(t_0) = \tau / |a_0 \omega_0 \cos(\omega_0 t_0)|$, which defines the "width" of $\delta(t-t_0)$. Now, the current density of Eq.(2) is also expressed in terms of a delta-function, $\delta[r - r_s(t)]$, but this is a delta-function of width τ defined on the radial coordinate *r*. It is a wellknown fact that, in the vicinity of t_0 where $f(t_0) = 0$, the function $\delta[f(t)]$ may be written as $\delta(t - t_0)/|f'(t_0)|$. Therefore, $\delta[r - r_s(t)] = \delta(t - t_0)/|a_0\omega_0\cos(\omega_0 t)|$. Substitution into Eq.(2) now confirms that $J_{\text{free}}(r,t)+\varepsilon_0\partial E(r,t)/\partial t=0$, as required.

The $3rd$ and $4th$ of Maxwell's equations are easily seen to be satisfied as well, because $\nabla \times \mathbf{E}(\mathbf{r},t) = 0$ and also $\mathbf{B}(\mathbf{r},t) = 0$.