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Solutions Opti 501 1/2 
 
Problem 41) The surface charge-density as a function of time is given by 
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When the sphere’s surface expands/contracts at the velocity Vs(t) = r⋅s(t) = aoωocos(ωo t)r^, it 
produces the current-density 

 free o o o ˆ( , ) ( ) cos( ) [ ( )] .s st t a t r r tσ ω ω δ= −J r r  (2) 

Here δ (⋅) is a Dirac delta-function of the radial coordinate r. 

a) The E-field must be oriented along the radial direction ˆ,r  as symmetry of the problem 
prohibits the field from having θ̂  and φ̂  components. Applying the integral form of Gauss’s law 
to a (concentric) sphere of radius r  yields 
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E r  (3) 

b) The vector potential A(r, t) must also be oriented along the radial direction, as the current 
density at the surface of the charged sphere is always radial, and as the contributions along θ̂  
and φ̂  of the various current elements to A(r, t) evaluated at a fixed observation point cancel out. 
Moreover, symmetry does not allow the remaining (radial) component, Ar , to depend on the 
angular coordinates θ  and φ . Thus A(r, t) can only be a function of the radial distance r. The curl 
of such a vector potential, ˆ( , ) ,rA r t× r∇  is readily seen to be zero. Consequently, the magnetic 
field everywhere inside and outside the sphere must vanish. 

One may also argue that the scalar potential ψ (r, t) must be similarly independent of θ  and 
φ , and that, therefore, the E-field, given by 

 ˆ( , ) ( , ) ( , )/ [ ( , ) / ( , ) / ] ,rt t t t r t r A r t tψ ∂ ∂ ∂ψ ∂ ∂ ∂= − − = − +E r r A r r∇  (4) 

is independent of θ  and φ , and is aligned with ˆ.r  This, of course, is the same conclusion reached 
in part (a) based on a direct argument from symmetry. 
 
c) The E-field found in part (a) obviously satisfies Maxwell’s 1st equation. It is also easy to see 
from Eqs.(1) and (3) that, at the surface of the charged sphere, the discontinuity of the E-field is 
equal to σs(t)/εo. 

To satisfy Maxwell’s 2nd equation, since H(r,t) = 0 and, therefore, 0× =H∇  everywhere, 
we must show that Jfree(r, t)+εo∂ E(r,t)/∂ t = 0. The only points where E varies with time are those 
at the surface of the charged sphere, where the D-field jumps discontinuously between zero and 
σs(t)r^; see Eqs.(1) and (3). At these points the local εo∂ E(r, t)/∂ t is a Dirac delta-function, 
namely, ±σs(t)δ (t −to)r^, where to is the instant of switching. Assuming the surface charge is 
confined to a layer of vanishingly small thickness τ , the time needed for the D-field to switch 
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between zero and σs(to)r^ will be τ /Vs(to) = τ / |aoωocos(ωo to)|, which defines the “width” of 
δ (t − to). Now, the current density of Eq.(2) is also expressed in terms of a delta-function, 
δ [r −rs(t)], but this is a delta-function of width τ  defined on the radial coordinate r. It is a well-
known fact that, in the vicinity of to where f (to) = 0, the function [ ( )]f tδ  may be written as 

o o( )/ ( )| |.t t f tδ ′−  Therefore, o o o o[ ( )] ( )/ cos( ) .| |sr r t t t a tδ δ ω ω− = −  Substitution into Eq.(2) now 
confirms that Jfree(r,t)+εo∂ E(r, t)/∂ t = 0, as required. 

The 3rd and 4th of Maxwell’s equations are easily seen to be satisfied as well, because 
( , ) 0t× =E r∇  and also B(r, t) = 0. 

 


