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Solutions Opti 501 1/2 
 
Problem 30) 

a) In cylindrical coordinates, the current-density is in the 𝝓�  direction and depends on 𝜌 and 𝑧, 
but not on 𝜙, that is, 𝑱(𝒓, 𝑡) = 𝐽𝜙(𝜌, 𝑧, 𝑡)𝝓� . Therefore, 𝜵 ∙ 𝑱(𝒓, 𝑡) = 𝜌−1�𝜕𝐽𝜙/𝜕𝜙� = 0. The 
charge-current continuity equation now yields 𝜕𝜌/𝜕𝑡 = 0, and since no charges are placed a 
priori on the loop, we conclude that 𝜌(𝒓, 𝑡) = 0 everywhere in space. 

b) The two segments of the loop that are parallel to 𝒚� are equidistant from the observation point 
𝒓 = 𝑦𝒚� + 𝑧𝒛�, but their currents are in opposite directions. Therefore, their contributions to 
𝑨(𝒓, 𝑡) cancel out. The remaining two segments have equal lengths (½𝜋𝑅 each), are centered at 
(𝑥′,𝑦′, 𝑧′) = (0, ±𝑅, 0), and carry current along ∓𝒙�. (Note that we are essentially approximating 
the circular loop with a square loop.) For the latter two segments, therefore, 

 𝑱(𝒓′, 𝑡)𝑑𝒓′ = ∓(½𝜋𝑅)𝐼0 cos(2𝜋𝑓𝑡) 𝒙�              (at 𝒓′ =  ±𝑅𝒚�). 

Using approximate expressions for the square roots, namely, √1 + 𝜀 ≅ 1 + ½𝜀 and 1/√1 + 𝜀 =
(1 + 𝜀)−½ ≅ 1 − ½𝜀, where |𝜀| ≪ 1.0, we may write 

 |𝒓 − 𝒓′| = |𝑦𝒚� + 𝑧𝒛� ∓ 𝑅𝒚�| = �(𝑦 ∓ 𝑅)2 + 𝑧2 = �(𝑦2 + 𝑧2) + 𝑅2 ∓ 2𝑅𝑦 

 ≅ �𝑟2 ∓ 2𝑅𝑦 = 𝑟�1 ∓ 2(𝑦/𝑟2)𝑅 ≅ 𝑟[1 ∓ (𝑦/𝑟2)𝑅] = 𝑟 ∓ (𝑦/𝑟)𝑅 = 𝑟 ∓ 𝑅 sin𝜃. 
Similarly, 

 |𝒓 − 𝒓′|−1 = |𝑦𝒚� + 𝑧𝒛� ∓ 𝑅𝒚�|−1 = [(𝑦 ∓ 𝑅)2 + 𝑧2]−½ = [(𝑦2 + 𝑧2) + 𝑅2 ∓ 2𝑅𝑦]−½ 

 ≅ [𝑟2 ∓ 2𝑅𝑦]−½ = 𝑟−1[1 ∓ 2(𝑦/𝑟2)𝑅]−½ ≅ 𝑟−1[1 ± (𝑦/𝑟2)𝑅] = 1
𝑟
�1 ± 𝑅 sin𝜃

𝑟
�. 

The vector potential is thus given by 

𝑨(𝒓, 𝑡) = 𝜇o
4𝜋∭

𝑱�𝒓′,   𝑡−�𝒓−𝒓′�/𝑐�
|𝒓−𝒓′|

𝑑𝒓′∞
−∞   

 = 𝜇o
4𝜋

(½𝜋𝑅𝐼0) �− cos�2𝜋𝑓�𝑡−�𝒓−𝒓1′ �/𝑐��
�𝒓−𝒓1′ �

+ cos�2𝜋𝑓�𝑡−�𝒓−𝒓2′ �/𝑐��
�𝒓−𝒓2′ �

� 𝒙� 

 = −𝜇o𝜋𝑅𝐼0
8𝜋𝑟

��1 + 𝑅 sin𝜃
𝑟

� cos �2𝜋𝑓 �𝑡 − 𝑟−𝑅 sin𝜃
𝑐

�� − �1 − 𝑅sin𝜃
𝑟

� cos �2𝜋𝑓 �𝑡 − 𝑟+𝑅 sin𝜃
𝑐

��� 𝒙�. 

The symmetry of the problem allows one to replace −𝒙� with 𝝓�  of the spherical coordinate 
system. Combining similar terms and using the two identities 

 cos𝑎 + cos𝑏 = 2 cos �𝑎+𝑏
2
� cos �𝑎−𝑏

2
�, 

 cos 𝑎 − cos 𝑏 = −2 sin �𝑎+𝑏
2
� sin �𝑎−𝑏

2
�, 

we now find 

 𝑨(𝒓, 𝑡) = 𝜇o𝜋𝑅𝐼0
4𝜋𝑟

�− sin �2𝜋𝑓 �𝑡 − 𝑟
𝑐
�� sin �2𝜋𝑓𝑅 sin𝜃

𝑐
� 

 + �𝑅 sin𝜃
𝑟

� cos �2𝜋𝑓 �𝑡 − 𝑟
𝑐
�� cos �2𝜋𝑓𝑅 sin𝜃

𝑐
��𝝓� . 

𝑅2, being smaller than the 
other terms, is dropped. 
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Considering that (2𝜋𝑓𝑅/𝑐) sin𝜃 = (2𝜋𝑅/𝜆0) sin𝜃 ≪ 1.0, where 𝑅 ≪ 𝜆0 = 𝑐/𝑓 and 𝜆0 is 
the vacuum wavelength, we use the small angle approximation sin𝛼 ≈ 𝛼 and cos𝛼 ≈ 1 − ½𝛼2, 
then ignore terms of order 𝑅2 and higher, to obtain 

 𝑨(𝒓, 𝑡) ≅ �𝜇o𝜋𝑅
2𝐼0

4𝜋
� �− �2𝜋

𝜆0
� sin[2𝜋𝑓(𝑡−𝑟/𝑐)]

𝑟
+ cos[2𝜋𝑓(𝑡−𝑟/𝑐)]

𝑟2
� sin𝜃𝝓� . 

Note that the coefficient 𝜇o𝜋𝑅2𝐼0 is the magnitude 𝑚0 of the magnetic dipole moment 𝒎(𝑡). 
 

c) 𝑩 = 𝜵 × 𝑨 = 1
𝑟 sin𝜃

𝜕(sin𝜃𝐴𝜙)
𝜕𝜃

𝒓� − 𝜕(𝑟𝐴𝜙)
𝑟𝜕𝑟

𝜽� 

 = 𝑚0
4𝜋

(2 cos𝜃) �− �2𝜋
𝜆0
� 1
𝑟2

sin(⋯ ) + 1
𝑟3

cos(⋯ )� 𝒓� 

 −𝑚0
4𝜋
�sin𝜃

𝑟
� ��2𝜋

𝜆0
�
2

cos(⋯ ) − 1
𝑟2

cos(⋯ ) + �2𝜋
𝜆0
� 1
𝑟

sin(⋯ )� 𝜽� 

 = 𝑚0
4𝜋
��− �2𝜋

𝜆0
� sin(⋯ )

𝑟2
+ cos(⋯ )

𝑟3
� �2 cos 𝜃 𝒓� + sin𝜃𝜽�� − �2𝜋

𝜆0
�
2 cos(⋯ )

𝑟
sin𝜃 𝜽��. 

Using 𝒛� = cos 𝜃 𝒓� − sin 𝜃 𝜽�, the above B-field may be rewritten as 

 𝑩(𝒓, 𝑡) = −𝑚0
4𝜋
�2𝜋
𝜆0
� ��sin(⋯ )

𝑟2
– �𝜆0

2𝜋
� cos(⋯ )

𝑟3
� (3 cos 𝜃 𝒓� − 𝒛�) + �2𝜋

𝜆0
� cos(⋯ )

𝑟
sin𝜃 𝜽��. 

Next we calculate the E-field, as follows: 

 𝑬(𝒓, 𝑡) = −𝜕𝑨
𝜕𝑡

= 𝑚0
4𝜋
��2𝜋

𝜆0
� (2𝜋𝑓) cos[2𝜋𝑓(𝑡−𝑟/𝑐)]

𝑟
+ (2𝜋𝑓) sin[2𝜋𝑓(𝑡−𝑟/𝑐)]

𝑟2
� sin 𝜃𝝓� . 

Using 𝑓 = 𝑐/𝜆0, the above equation may be written 

 𝑬(𝒓, 𝑡) = 𝑚0𝑐
4𝜋

�2𝜋
𝜆0
� ��2𝜋

𝜆0
� cos[2𝜋𝑓(𝑡−𝑟/𝑐)]

𝑟
+ sin[2𝜋𝑓(𝑡−𝑟/𝑐)]

𝑟2
� sin𝜃𝝓� . 

As a check on the above calculations, we confirm that 𝜵 × 𝑬(𝒓, 𝑡) is equal to −𝜕𝑩(𝒓, 𝑡)/𝜕𝑡, 
as required by Maxwell’s third equation. 

 𝜵 × 𝑬(𝒓, 𝑡) = 1
𝑟 sin𝜃

𝜕(sin𝜃𝐸𝜙)
𝜕𝜃

𝒓� − 𝜕(𝑟𝐸𝜙)
𝑟𝜕𝑟

𝜽� 

 = 𝑚0𝑐
4𝜋

�2𝜋
𝜆0
� (2 cos 𝜃) ��2𝜋

𝜆0
� cos(⋯ )

𝑟2
+ sin(⋯ )

𝑟3
� 𝒓� 

 −𝑚0𝑐
4𝜋

�2𝜋
𝜆0
� �sin𝜃

𝑟
� ��2𝜋

𝜆0
�
2

sin(⋯ ) − sin(⋯ )
𝑟2

− �2𝜋
𝜆0
� cos(⋯ )

𝑟
� 𝜽� 

 = 𝑚0𝑐
4𝜋

�2𝜋
𝜆0
� ���2𝜋

𝜆0
� cos(⋯ )

𝑟2
+ sin(⋯ )

𝑟3
� (3 cos 𝜃 𝒓� − 𝒛�) − �2𝜋

𝜆0
�
2 sin(⋯ )

𝑟
sin𝜃𝜽��. 

The equality of the above expression with −𝜕𝑩/𝜕𝑡 is readily confirmed. 

“⋯” stands for 2𝜋𝑓(𝑡 − 𝑟/𝑐). 

“⋯” stands for 2𝜋𝑓(𝑡 − 𝑟/𝑐). 


