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Problem 30)

a) In cylindrical coordinates, the current-density is in the ¢ direction and depends on p and z,
but not on ¢, that is, J(r,t) = J4(p, z t)P. Therefore, V- J(r,t) = p~*(0),/0¢) = 0. The
charge-current continuity equation now yields dp/dt = 0, and since no charges are placed a
priori on the loop, we conclude that p(r,t) = 0 everywhere in space.

b) The two segments of the loop that are parallel to ¥ are equidistant from the observation point
r = yy + zZ, but their currents are in opposite directions. Therefore, their contributions to
A(r, t) cancel out. The remaining two segments have equal lengths (Y2mR each), are centered at
(x',y',z") = (0,£R, 0), and carry current along +x. (Note that we are essentially approximating
the circular loop with a square loop.) For the latter two segments, therefore,

J@', t)dr' = +¥(¥%nR)I, cos(2rft) X (atr’ = £RY).

Using approximate expressions for the square roots, namely, v1 + e =1+ %eand 1/V1 + ¢ =
(14 &) % =1 — Ye, where |¢| « 1.0, we may write

, ~ . — — — R?, being smaller than the
lr—v'|=1yY+2z2F Ryl =y FR)? + 22 =/(¥2 +22) + R2F 2Ry < other terms, is dropped.

= Jr2¥ 2Ry =r1F2(y/r>)R=r[1F (y/r®)R] =7 F (y/r)R =7 F Rsinb.
Similarly,

lr—r' |71 =y +z22FRY|" P = [(y FR)?> + z%] " = [(y? + z2) + R*F 2Ry] ™ «—
= [r2 F2Ry] ™ = r 1 F 2(y/rR] % = r 1 £ (y/rR] = > (1 £ 2222),
The vector potential is thus given by
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The symmetry of the problem allows one to replace —x with ¢ of the spherical coordinate
system. Combining similar terms and using the two identities

+b -b
cosa + cosb = 2 cos (aT) coS (aT)
. +b . -b
cosa — cosb = —2sin (aT) sin (aT)
we now find

A(r,t) = %{— sin [27rf (t — E)] sin (w)
(1) oo - eos(2222) 3

1



Considering that (2mfR/c)sin0 = (2nR/A,) sinf « 1.0, where R < 1y, = ¢/f and A, is
the vacuum wavelength, we use the small angle approximation sina ~ « and cosa ~ 1 — %a?,
then ignore terms of order R? and higher, to obtain
2
A ~ UoTR*Iy sin[2rf(t-r/c)] cos[an(t—r/c)] . A.
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Note that the coefficient p,mR?I, is the magnitude m, of the magnetic dipole moment m(t).
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Using Z = cos 6 #* — sin 6 8, the above B-field may be rewritten as

B(r,t) = —%(2—”) {[Sin(m)— (/10) cost )] (3cosOF —2) + ( )COST( sing 0}
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Next we calculate the E-field, as follows:

E(T t) _ _O_A _ @{( ) (2 f) cos an(t r/c)] (2 f) sin an(t r/c)] }sin@ a
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Using f = c¢/1,, the above equation may be written

E(T t) moc (211:) {(27‘5) cos[2rf(t—r/c)] sm[an(t—r/c)J} sin @ (/ﬁ
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As a check on the above calculations, we confirm that V x E(r, t) is equal to —dB(r, t)/dt,
as required by Maxwell’s third equation.
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= 4; ( 0)(2 cos 0) [( ) + 3 ] <« “:--” stands for 2nf (t — r/c).
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= %(i—:) {[(i—:)% sinC: )] (3cosOF —2) — ( 0) Smﬁ 2 n00}

The equality of the above expression with —dB/adt is readily confirmed.




