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From symmetry, it is clear that the vector potential A is everywhere in the ¢3 direction, and

that the contribution of the volume element shown in the figure is Js,sing' RA#' AZ. Therefore,
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Now, from the Table of Integrals (Gradshteyn & Ryzhik, 2.261) we find
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Depending on the value
of ¢', the expression
(R+r*=2rRsing') is
somewhere between
(R-r)?and (R+r)?,
thus ensuring that it is
always non-negative.
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When z,— o, the first term on the right-hand-side of the above equation becomes very large,
but its variations with & become insignificant. We can, therefore, drop this term, which does not

vary with «, even though its magnitude is infinite. We will have
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The first integral on the right-hand-side of the above equation is zero. As for the second
integral, when ¢' is replaced by (Y2r—¢'), sing' changes to cos¢g', but nothing else changes
because the integral covers one full period of the sine and cosine functions. We will have
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% TRV o r<R

A =1

2,qu RY/r; r>R

uJ R|[-7(r/R); <R
-r(Rr); r>R




