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Problem 18) 
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From symmetry, it is clear that the vector potential A is everywhere in the ̂  direction, and 

that the contribution of the volume element shown in the figure is Jso sin' R'z'. Therefore, 
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Now, from the Table of Integrals (Gradshteyn & Ryzhik, 2.261) we find 
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When zo→, the first term on the right-hand-side of the above equation becomes very large, 
but its variations with   become insignificant. We can, therefore, drop this term, which does not 
vary with  , even though its magnitude is infinite. We will have 
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The first integral on the right-hand-side of the above equation is zero. As for the second 
integral, when ' is replaced by (½ '), sin' changes to cos', but nothing else changes 
because the integral covers one full period of the sine and cosine functions. We will have 
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Therefore, 
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Depending on the value 
of ', the expression 

(R2 + r 22rRsin' ) is 
somewhere between 
(R r )2 and (R + r )2, 

thus ensuring that it is 
always non-negative. 


