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Problem 17) a) The surface current-density is readily seen to be o ˆ( /2 ) .s I RJ z  In what follows, 

we will break up the hollow cylinder into a large number of infinitesimal straight wires, each 
having a width R, all directed along z, and all having the same current density Js. The vector 
potential of any such wire at a radial distance o is given by 
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When zo→, the first term on the right-hand-side of the above equation becomes very large, 
but its variations with o become insignificant. We can, therefore, drop this term, which does not 
vary with o, even though its magnitude is infinite. We will have 2

o o o o ˆ( ) ( ln /4 ) .I     A z  

b) For a single wire located at the azimuthal angle , the distance to r is  R2 + 22R cos , as 
shown in the figure. The current in this wire is (Io/2)d . 
The corresponding vector potential at point r is thus given by  
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Integrating over all the (infinitesimal) wires around the 
cylinder, we obtain 
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c) The magnetic field is readily computed as the curl of the vector potential A(r), that is, 
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The above H(r) satisfies Ampere’s law, namely, o ocircle
d 2 ( /2 ) ,I I    H   for  > R. 

At the cylinder surface, the H-field just inside the cylinder vanishes, while the field just outside 

is o
ˆ.( /2 )I R   This discontinuity in the tangential H-field is precisely equal to the surface current 

density Js, and perpendicular to it, confirming that the relevant boundary condition is indeed 
satisfied. 
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