Problem 8) At the shell surface, $\psi(r)$ must be continuous. Therefore,

$$(A\cos\theta)/R^2 = BR\cos\theta \rightarrow B = A/R^3$$

The boundary condition derived from Maxwell's first equation requires that, at the surface of the shell, the surface charge-density $\sigma(\mathbf{r})$ be equal to the discontinuity in $\varepsilon_0 E_{\perp}$, where, given the geometry of the present problem, $E_{\perp} = E_r$. Therefore,

$$\sigma_0 \cos \theta = \varepsilon_0 \Big[E_r^{(\text{out})} - E_r^{(\text{in})} \Big]$$

Since $E_r = -\partial \psi / \partial r$ evaluated at $r = (R, \theta, \phi)$, we will have

$$\sigma_0 \cos \theta = \varepsilon_0 \left[-\frac{\partial}{\partial r} \left(\frac{A \cos \theta}{r^2} \right) \Big|_{r=R} + \frac{\partial}{\partial r} (Br \cos \theta) \Big|_{r=R} \right]$$

$$\rightarrow \quad \sigma_0 = \varepsilon_0 \left[(2A/R^3) + B \right] = 3\varepsilon_0 A/R^3 \quad \rightarrow \quad A = \sigma_0 R^3/(3\varepsilon_0).$$

The scalar potential *outside* the sphere is thus $\psi(\mathbf{r}) = \sigma_0 R^3 \cos \theta / (3\varepsilon_0 r^2)$. Compared with the scalar potential derived in Chapter 4, Example 8 for an electric point-dipole $\mathbf{p} = p_0 \hat{\mathbf{z}}$, we observe that the charged spherical shell in the present problem is equivalent to a dipole $\mathbf{p} = (4\pi R^3 \sigma_0/3)\hat{\mathbf{z}}$, located at the origin of the coordinate system.

Inside the shell, $\psi(\mathbf{r}) = Br \cos \theta = (\sigma_0/3\varepsilon_0)(r \cos \theta) = (\sigma_0/3\varepsilon_0)z$, which is a linear function of the vertical coordinate z. Therefore, the *E*-field inside the shell is given by

$$\boldsymbol{E}(\boldsymbol{r}) = -\boldsymbol{\nabla}\psi(\boldsymbol{r}) = -(\partial\psi/\partial z)\hat{\boldsymbol{z}} = -(\sigma_0/3\varepsilon_0)\hat{\boldsymbol{z}}.$$

The internal field of the spherical dipole is thus uniform, having a magnitude of $\sigma_0/3\varepsilon_0$ and pointing along the negative *z*-axis.