Opti 501

Problem 6) a) $E(x, y, z = 0) = -\frac{2Q}{4\pi\varepsilon_0} \left(\frac{\cos\theta}{r^2}\right) \hat{z} = -\frac{2Qd}{4\pi\varepsilon_0 r^3} \hat{z} = -\frac{Qd}{2\pi\varepsilon_0 (x^2 + y^2 + d^2)^{3/2}} \hat{z}$ b) $\psi(x, y, z = 0) = \frac{Q}{4\pi\varepsilon_0 r} - \frac{Q}{4\pi\varepsilon_0 r} = 0.$

Alternatively, since the *E*-field is perpendicular to the *xy*-plane, the integral of $E \cdot d\ell$ from any point (x_0, y_0) in the *xy*-plane to infinity, taken along any arbitrary path in the *xy*-plane, will be zero. By definition, this integral is the scalar potential at (x_0, y_0) ; therefore, $\psi(x, y, z = 0) = 0$.

c) This is the so-called "method of images." The *E*-field in the upper half-space $z \ge 0$ is the same for the systems depicted in figures (a) and (b). The surface charge-density is proportional to the perpendicular component of the *E*-field at the surface of the conductor. We thus have

$$\sigma(x,y) = \varepsilon_0 E_{\perp}(x,y,z=0) = -\frac{Qd}{2\pi (x^2 + y^2 + d^2)^{3/2}}$$

Note: The integral of $\sigma(x, y)$ over the entire *xy*-plane equals -Q.