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Problem 5) 

Maxwell’s 4th equation: ( ) 0 ( ) ( )⋅ = → = ×B r B r A r∇ ∇  because ( ) 0.[ ]⋅ × =A r∇ ∇  

Maxwell’s 2nd equation: free o free( ) ( ) ( ) ( ) ( )μ× = → × = + ×H r J r B r J r M r∇ ∇ ∇  
 o free bound o total( ) ( ) ( ) ( ).[ ]μ μ→ × = + =B r J r J r J r∇  

Combining the above equations then yields o total( ) ( ).[ ] μ× × =A r J r∇ ∇  These equations involve 
only the transverse component of A(r), leaving its longitudinal component to be chosen freely. 
We thus set ( ) 0,⋅ =A r∇  and proceed to use the definition of the Laplacian operator, 

2 ( ) ( )= ⋅ − × ×A A A∇ ∇ ∇ ∇ ∇  to arrive at 2
o total( ).μ= −A J r∇  In the Fourier domain, this equation 

yields 2
o total( ) ( )/ .kμ=A k J k  

Note that our choice of gauge, ( ) 0,⋅ =A r∇  requires that ( ) 0,⋅ =k A k  which, in turn, requires 
that total( ) 0.⋅ =k J k  This is obviously valid for Jfree, because the charge-current continuity 
equation, free free( ) ( , )/ 0,t t∂ρ ∂⋅ + =J r r∇  ensures, in the absence of a time-dependent charge-
density, that free( ) 0,⋅ =J r∇  and that, consequently, free( ) 0.⋅ =k J k  The transversality requirement 
is also satisfied by 1

bound o( ) ( ),μ −= ×J r M r∇  because 1
bound o( ) i ( ),μ −= ×J k k M k  which yields 

 1 1
bound o o( ) i [ ( )] i ( ) ( ) 0.μ μ− −⋅ = ⋅ × = × ⋅ =k J k k k M k k k M k  

Returning now to the vector potential A(r), recall that in Chapter 3, Problem 4(a), the 3D 
Fourier transform of f (r)=1/|r | was found to be F(k) = 4π /k2. We may thus write 
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The B-field may now be obtained from ( ) ( ),= ×B r A r∇  using the above vector potential and the 
identity  ( ) ( ) ( ) ( ) ( ) ( ),[ ] [ ]f f f× = × + ×r V r r V r r V r∇ ∇ ∇  as follows: 

F {1/|r |}

Change of variable: r′=r−r″ 
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The above equation, relating a time-independent current-density distribution to its B-field, is 
known as the Biot-Savart law of magnetostatics. An alternative derivation relies on the fact that 
B(r) is a purely transverse field, as Maxwell’s 4th equation, ( ) 0,⋅ =B r∇  sets the field’s 
longitudinal component to zero. Maxwell’s 2nd equation, o total( ) ( ),μ× =B r J r∇  in conjunction 
with the knowledge that total( )J r  is transverse, i.e., total 0,⋅ =J∇  then yields the B-field as follows: 
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We thus have 
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Given that the 3D Fourier transform of the function f (r) = −r^ /r2, derived in Chapter 3, Problem 
4(d), is F(k)= 4π i  k^ /k , the preceding equation may be written 
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This is the same result as obtained previously by applying the curl operator to the vector 
potential. Either way, the B-field is computed by applying the Biot-Savart law to individual 
volume elements of the current-density, then integrating over the entire space. Finally, the H-
field is obtained by subtracting M(r) from the above B-field, then dividing by μo, that is, 

 o ( ) ( ) ( ).μ = −H r B r M r  

Change of variable: r′=r−r″ 

F { r^ /r2} =F {r / |r |3}

Under the integral, the 
∇ × operator acts on r, 

treating r ′ as a constant.


