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Problem 4) 

From Maxwell’s 3rd equation: ( ) 0 ( ) ( )ψ× = → =−E r E r r∇ ∇  because ( ) 0.ψ× =r∇ ∇  

From Maxwell’s 1st equation: free o free( ) ( ) ( ) ( ) ( )ρ ε ρ⋅ = → ⋅ = − ⋅D r r E r r P r∇ ∇ ∇  
 o free bound total( ) ( ) ( ) ( ).ε ρ ρ ρ→ ⋅ = + =E r r r r∇  

Combining the above equations then yields 2
total o( ) ( )/ ,ψ ρ ε= −r r∇  whose Fourier transform is 

2
total o( ) ( )/( ).kψ ρ ε=k k  In Chapter 3, Problem 4(a), it was found that the 3D Fourier transform of 

f (r)=1/|r | is F(k) = 4π /k2. We may thus write 
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The E-field is now obtained from the above scalar potential using ( ) ( ),ψ=−E r r∇  as follows: 
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Alternatively, one could observe that Maxwell’s first equation, o total( ) ( ),ε ρ⋅ =E r r∇  yields 
the longitudinal component of the E-field, as follows: 
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However, Maxwell’s third equation, ( ) 0,× =E r∇  implies that the transverse component of E(r) 
is zero, and that, therefore, E(r) is purely longitudinal. Consequently, E(k) = E|| (k), and we have 
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Now, the 3D Fourier transform of f (r) = −r^ /r2 was found in Chapter 3, Problem 4(d), to be 
F(k) = 4π i  k^ /k . We may thus write 

F {1/|r |}

Change of variable: r′=r−r″ 

Under the integral, the 
∇ operator acts on r, 

treating r ′ as a constant.
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This is the same result as obtained previously by applying the gradient operator to the scalar 
potential. Either way, the E-field is seen to be computed by applying Coulomb’s law to 
individual volume elements of charge, then integrating over the entire space. Finally, the D-field 
is obtained by adding P(r) to εo times the above E-field, that is, 

 o( ) ( ) ( ).ε= +D r E r P r  

Change of variable: r′=r−r″ 

F { r^ /r2} =F {r / |r |3} 


