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Problem 4)
From Maxwell’s 3" equation: VxE(r)=0 — E(r)=—Vy(r) because Vx Vi (r)=0.
From Maxwell’s 1% equation: V-D(r)= p,.(r) — &V -E(r)=p,.(r)-V-P(r)
= &V -E(1) =051 + Poouna (1) = Proga(1)-
Combining the above equations then yields V’w(r)=-p, . (r)/¢,, whose Fourier transform is

w(K) = p,.(K)/(£,k*). In Chapter 3, Problem 4(a), it was found that the 3D Fourier transform of
f(r)=1/|r| is F(k)=4z/k*. We may thus write
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The E-field is now obtained from the above scalar potential using E(r)=—Vw/(r), as follows:
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Under the integral, the
Voperator acts on I,
treating '’ as a constant.

Alternatively, one could observe that Maxwell’s first equation, ¢V -E(r)=p,,(r), yields
the longitudinal component of the E-field, as follows:
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However, Maxwell’s third equation, V' x E(r) =0, implies that the transverse component of E(r)
is zero, and that, therefore, E(r) is purely longitudinal. Consequently, E (K) = E;(K), and we have

E(N =4 {EK)} =) E(Rexp(kr)dk =-i27)" [ —pw*al(:)k exp(ik-r)dK.
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Now, the 3D Fourier transform of f(r)=—r/r? was found in Chapter 3, Problem 4(d), to be
F(k)=4rik/k. We may thus write
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This is the same result as obtained previously by applying the gradient operator to the scalar
potential. Either way, the E-field is seen to be computed by applying Coulomb’s law to
individual volume elements of charge, then integrating over the entire space. Finally, the D-field
is obtained by adding P(r) to &, times the above E-field, that is,

D(r)=¢,E(r)+P(r).




