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Problem 4.47)
a) A(r,t) =A
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Using the Taylor series expansion of sine and cosine functions, we write
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Therefore, in the limit when r — 0, we have
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It is thus seen that A, (r,t) approaches zero when r — 0, and that, therefore, the vector
potential does not have a singularity at the origin.

b) In the Lorenz gauge, V- A + (1/c¢?) 9y /dt = 0. In the present problem, since Y (r,t) = 0, it
is sufficient to show that V- A = 0. Considering that the only component of A(r, t) is A, which
is independent of the azimuthal angle ¢, we have V- A = (rsin6)~'dA,/d¢ = 0. The Lorenz
gauge requirement is therefore satisfied.

c) E(rt) = -V — 2 = Ao |
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d) B(r,t) = uoH(r,t) = VX A(r,t) =
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Note that Lim ,_o B(r,t) = 2/3k0A0(cos 67 —sinf a) cos(wt) = 2skyAyZ cos(wt) is regular.

e) S(rt)=ExXH-=
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Since the time-averaged S(r, t) is zero, the electromagnetic energy is essentially stationary.




