Problem 4.40)

a)
$$
\mathbf{E}(\mathbf{r}) = -\nabla \psi(\mathbf{r}) = -\frac{\partial \psi}{\partial r}\hat{\mathbf{r}} - \frac{\partial \psi}{r\partial \theta}\hat{\boldsymbol{\theta}} = \begin{cases} -(P_0/3\varepsilon_0) (\cos\theta \,\hat{\mathbf{r}} - \sin\theta \,\hat{\boldsymbol{\theta}}); & r < R, \\ (P_0 R^3 / 3\varepsilon_0) (2\cos\theta \,\hat{\mathbf{r}} + \sin\theta \,\hat{\boldsymbol{\theta}})/r^3; & r \ge R. \end{cases}
$$

The field inside the sphere may be further simplified and written as $\mathbf{E}(\mathbf{r}) = -(P_0/3\varepsilon_0)\hat{\mathbf{z}}$.

b)
$$
\rho_{\text{bound}}^{(e)}(\mathbf{r}) = -\nabla \cdot \mathbf{P}(\mathbf{r}) = -\nabla \cdot \left[P_0 \text{ Sphere}(r/R) (\cos \theta \, \hat{\mathbf{r}} - \sin \theta \, \hat{\mathbf{\theta}}) \right]
$$

\n
$$
= -\frac{\partial (r^2 P_r)}{r^2 \partial r} - \frac{\partial (\sin \theta P_\theta)}{r \sin \theta \partial \theta}
$$

\n
$$
= -\left(\frac{P_0 \cos \theta}{r^2} \right) \frac{\partial [r^2 \text{ Sphere}(r/R)]}{\partial r} + \left[\frac{P_0 \text{Sphere}(r/R)}{r \sin \theta} \right] \frac{\partial \sin^2 \theta}{\partial \theta}
$$

\n
$$
= -\frac{P_0 \cos \theta [2r \text{ Sphere}(r/R) - r^2 \delta(r-R)]}{r^2} + \frac{2P_0 \text{Sphere}(r/R) \cos \theta}{r} = P_0 \delta(r-R) \cos \theta.
$$

Because of the δ -function appearing in the above charge-density profile, we can state that the sphere has a bound *surface-charge-density* $\sigma_s(r = R, \theta, \phi) = P_0 \cos \theta$. Note that the surfacecharge-density is positive on the upper hemisphere and negative on the lower hemisphere.

c) The parallel (or tangential) component of the E-field at the surface of the sphere is E_{θ} , which is found in (a) to be equal to $(P_0/3\varepsilon_0)$ sin θ immediately inside as well as immediately outside the sphere. The continuity requirement for the tangential E -field is, therefore, satisfied.

The perpendicular component of the D -field inside the sphere is given by

$$
D_{\perp} = \varepsilon_0 E_r + P_r = -\frac{1}{3} P_0 \cos \theta + P_0 \cos \theta = \frac{2}{3} P_0 \cos \theta.
$$

Outside the sphere and immediately above the surface, we have $D_{\perp} = \varepsilon_0 E_r = \frac{2}{3} P_0 \cos \theta$. Therefore, in the absence of free surface-charge-density, the continuity of D_1 is confirmed.

If, instead of D_{\perp} , we examine the perpendicular component of the E-field, we find, at the surface of the sphere, the following discontinuity in E_{\perp} :

$$
E_r(r = R^+, \theta, \phi) - E_r(r = R^-, \theta, \phi) = (2P_0/3\varepsilon_0)\cos\theta - (-P_0/3\varepsilon_0)\cos\theta
$$

$$
= (P_0/\varepsilon_0)\cos\theta.
$$

This, however, is precisely equal to the bound surface-charge-density $\sigma_s = P_0 \cos \theta$ found in part (b), divided by ε_0 , which is, once again, consistent with the boundary condition derived from Maxwell's 1st equation, $\nabla \cdot \mathbf{E}(\mathbf{r},t) = \varepsilon_0^{-1} \rho_{\text{total}}^{(e)}(\mathbf{r},t)$.