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Solutions Opti 501 1/4 
 
Problem 4-38) a) With reference to problem 4-12, The E-field of the spherical dipole is given by 
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The linear momentum density is E(r)×H(r)/c2. Since o ˆ( ) sJ=H r y  is constant within the 

gap and zero outside, the total momentum may be found by integrating the E-field throughout the 
gap region, then cross-multiplying it into 2

o ˆ( / ) .sJ c y  Due to symmetry, the x-component of the E-
field integrates to zero, leaving only the z-component to evaluate. We have 
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The total electromagnetic momentum is thus seen to be 3
o o o ˆ(4 /3) .sR P Jp µ x  This is equal in 

magnitude but opposite in direction to the integrated force on the dipole as it grows from zero to 
the final value of o ˆP z , namely, 
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b) The field momentum in this case is found, once again, by integrating the z-component of the 
E-field throughout the gap, then cross-multiplying into 2

o ˆ( / ) .sJ c x  (Due to symmetry, the y-
component of the E-field integrates to zero and need not be considered.) The integral of Ez taken 
at fixed (x,y) along z from –∞ to +∞ now turns out to be exactly zero; see Problem 4-36, where a 
similar integral for the H-field of a magnetic dipole is evaluated. The total EM momentum within 
the gap thus vanishes, and we are left to explain the mechanical momentum acquired by the 
dipole during the (slow) process of spontaneous polarization, namely, 
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As it turns out, an equal but opposite mechanical momentum is picked up by the parallel 
plates during the process of spontaneous polarization of the dipole. The Lorentz force of the 
magnetic field induced by the dipole’s time-varying E-field acts on the current sheets to push 
them both along the negative y-axis. To find the induced H-field, we use Maxwell’s 2nd equation, 

o / ,tε ∂ ∂× =H E∇  over a spherical cap at radius r > R, extending from θ = 0 to an arbitrary polar 
angle θ =θ0. We will have 
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The time-rate-of-change of the above D-field flux is then equal to the integral of the H-field 
around the cap’s boundary, namely, 0 02 sin ( , , ).r H r tφp θ θ  Denoting by o ( )P t′  the time-derivative 
of o( ),P t  we write 
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The push (or pull) force on the current sheets is exerted by the x-component of the induced 
H-field at the surface of each sheet located at y = ±d/2, namely, 
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Integrating the above Hx over an entire xz-plane yields 
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Cross-multiplying the surface-current-density o ˆsJ± z  into the integrated o ˆxHµ x  now yields 

the total force on each sheet as o o o
32 ˆ( /3) ( ) .sR P t Jp µ ′− y  This force should be doubled to account 

for both sheets, then integrated over time to yield the mechanical momentum transferred to the 
sheets. It is seen that the mechanical momentum is equal in magnitude and opposite in direction 
to that acquired by the dipole while being polarized. 
 

change of variable:ρ = y tanχ 
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c) There are many similarities between this part and part (b). The field momentum is found by 
integrating the z-component of the H-field throughout the gap, then cross-multiplying into 

2
o o ˆ/ .sc µ s=E y  (Due to symmetry, the x-component of the H-field integrates to zero and need 

not be considered.) As in Problem 4-36, the integral of Hz taken at fixed (x,y) along z from –∞ to 
+∞ turns out to be exactly zero. The total EM momentum within the gap thus vanishes, and we 
are left to explain the mechanical momentum acquired by the dipole during the (slow) process of 
spontaneous magnetization, namely, 
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It turns out that an equal but opposite mechanical momentum is picked up by the parallel 
plates during the process of spontaneous magnetization of the dipole. The Lorentz force of the E-
field induced by the dipole’s time-varying H-field acts on the charged sheets to push them both 
along the negative x-axis. To find the induced E-field, we use Maxwell’s 3rd equation, 

o / ,tµ ∂ ∂× = −E H∇  over a spherical cap at radius r > R, extending from θ = 0 to an arbitrary polar 
angle θ =θ0. We will have 
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The time-rate-of-change of the above B-field flux is then equal to the integral of the E-field 
around the cap’s boundary, namely, 0 02 sin ( , , ).r E r tφp θ θ−  Denoting by o( )M t′  the time-
derivative of o( ),M t  we write 
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The push (or pull) force on the current sheets is exerted by the x-component of the induced 
E-field at the surface of each sheet located at y = ±d/2, namely, 

o o
2

3 3

2 2 2 3/2
( )sin sin ( )ˆ ˆ( , , , ) ( , , ) .
3 3( )x

R M t R M t yE r t E r t
r x y zφ

θ φθ φ θ
′ ′

= ⋅ = =
+ +

xφ  

Integrating the above Ex over an entire xz-plane yields 
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Multiplying the surface-charge-density oss±  into the integrated ˆxE x  now yields the total 

force on each sheet as o o
32 ˆ( /3) ( ) .sR M tp s′− x  This force should be doubled to account for both 

sheets, then integrated over time to yield the mechanical momentum transferred to the sheets. It 
is seen that the mechanical momentum is equal in magnitude and opposite in direction to that 
acquired by the dipole while being magnetized. 
 

change of variable:ρ = y tanχ 
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d) The sheets in this case pick up exactly the same momentum as in part (c), but the dipole itself 
will acquire no momentum at all, simply because the E-field does not exert a force on the 
current-carrying hollow shell. The field momentum, however, is no longer zero because the H-
field inside the shell is larger than that in part (c). Considering that the B-field inside the hollow 
shell must be the same as that inside the solid sphere of part (c), namely, 
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we see that the H-field inside the hollow shell is greater than that inside the solid sphere by 
o oˆ/ .M µz  The corresponding increase in the field momentum will thus be 
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This field momentum is equal in magnitude and opposite in direction to that acquired by the 
parallel plates while the current around the spherical shell rose from zero to its final value. 
Conservation of momentum is thus confirmed.  
 


