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Solutions Opti 501 1/3 

Problem 4-36) 
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The H-field energy is thus seen to be divided between the inside and outside regions of the 
magnetized sphere, with the inside region containing one-third of the total energy. Denoting the 
dipole moment by 3

o ˆ(4 /3) ,R Mπ=m z  the total energy may also be expressed as 2 3
o/(8 ).m Rπm  

This so-called self-energy of the dipole increases without bound as the sphere radius shrinks 
while m is kept constant. 
 
b) The time rate of exchange of electromagnetic energy density between a magnetic material 
having magnetization M(r, t) and a magnetic field H(r, t) is given by 
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If the magnetization throughout the sphere rises uniformly and slowly, the H-field acting on 
this magnetization will also be uniform and given by H(t) = −M(t)/3µo. If the magnetization 
changes by a small amount ∆M during a time interval ∆t, the exchanged energy density will be 
given by  ∆E = H ⋅∆M, independent of ∆t, provided of course that ∆M/∆t is sufficiently small for 
the effects of radiation to be negligible. Thus, when M rises from an initial value of zero to a 
final value of o ˆ,M z  the total exchanged energy will be 
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The minus sign in the above expression (caused by the internal H-field being opposite in 
direction to M), indicates that the energy has come out of the magnetized material and appeared 
as H-field energy both inside and outside the sphere. Aside from this minus sign, the final 
expression is identical to that obtained in part (a) by integrating the H-field energy density of the 
spherical dipole over the entire space. 
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c) We determine the bound electric current-density of the solid sphere by expressing its 
magnetization as o ˆ( , ) Sphere( / ),t M r R=M r z  which in spherical coordinates could be written as 

o
ˆˆ( , ) Sphere( / )(cos sin ).t M r R θ θ= −M r r θ  We will have 
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This azimuthal current-density confined to the surface of the sphere may equivalently be 
described as a surface-current-density o o

1 ˆ( , , ) sin .s r R Mθ φ µ θ−= =J φ  
Now, the magnetic field distribution of a uniformly-magnetized sphere may be obtained by 

solving Maxwell’s 2nd and 4th equations in two different (albeit equivalent) ways: (i) by writing 
them as ( ) 0× =H r∇  and ( )

o bound( ) ( ) ,mρm ⋅ = − ⋅ =H ρ M ρ∇ ∇  and (ii) by writing them as 
( )
boundo( ) ( ) ( )eµ× = × =B r M r J r∇ ∇  and ( ) 0.⋅ =B r∇  In both cases we will find the same solution 

for H(r) as given in the statement of the problem. The B-field inside the sphere will thus turn out 
to be o o
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In the case of a hollow spherical shell carrying a constant surface-current-density 
( , , ),s r R θ φ=J  the relevant Maxwell equations are o( ) ( )( , )s r Rµ θ φ δ× = −B r J∇  and 

( ) 0,⋅ =B r∇  which are the same as the aforementioned second set of equations for a uniformly-
magnetized sphere. The B-field inside as well as outside the hollow shell must therefore be 
identical with the B-field of the uniformly-magnetized sphere. We conclude that, while the H-
field outside the hollow shell is the same as that of the uniformly-magnetized solid sphere, the H-
field inside the hollow shell is given by 1

o o
.( ) ( ) 2 ( )/( )3µ µ−= =H r B r M r  The H-field energy density 

inside the hollow shell is thus four times greater than that inside the uniformly-magnetized solid 
sphere. When the procedure used in part (a) is repeated for the hollow shell, the resulting total 
energy of the H-field is found to be 3 2

o o(4 /3) /(3 ),R Mπ µ  which is twice as large as that of the 
solid sphere. 
 
d) Using Maxwell’s 3rd equation, ( , ) ( , )/ ,t t t∂ ∂× = −E r B r∇  and the fact that the B-field inside 
the hollow shell is uniform and equal to o

2
3 ˆ,M z  we find the induced E-field on the ring of radius 

Rsinθ  to be given by 
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The rate of exchange of EM energy density with the surface-current Js(r =R,θ,φ) is thus 
found to be 
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Integration over the surface of the sphere then yields 
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Integrating the above result from M = 0 to Mo yields a total energy of 3 2
o o(4 /3) /(3 ),R Mπ µ  

which is the energy extracted from the surface-current while this current is being raised from 
zero to its final value. The total energy extracted from the surface current of course goes into 
building the H-field both inside and outside the shell, as shown in part (c). 
 


