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Problem 4-36) Inside the sphere Outside the sphere
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The H-field energy is thus seen to be divided between the inside and outside regions of the
magnetized sphere, with the inside region containing one-third of the total energy. Denoting the
dipole moment by m = (47R*3)M,z, the total energy may also be expressed as mz/(87r,uoR3).

This so-called self-energy of the dipole increases without bound as the sphere radius shrinks
while m is kept constant.

b) The time rate of exchange of electromagnetic energy density between a magnetic material
having magnetization M (r,¢) and a magnetic field H(r, ) is given by
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If the magnetization throughout the sphere rises uniformly and slowly, the H-field acting on
this magnetization will also be uniform and given by H(t)=—-M(¢)/3 . If the magnetization
changes by a small amount AM during a time interval A¢, the exchanged energy density will be

given by AE&=H-AM, independent of A¢, provided of course that AM/A¢ is sufficiently small for
the effects of radiation to be negligible. Thus, when M rises from an initial value of zero to a
final value of Mz, the total exchanged energy will be

=H(r,t):
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The minus sign in the above expression (caused by the internal H-field being opposite in
direction to M), indicates that the energy has come out of the magnetized material and appeared
as H-field energy both inside and outside the sphere. Aside from this minus sign, the final
expression is identical to that obtained in part (a) by integrating the H-field energy density of the
spherical dipole over the entire space.



c) We determine the bound electric current-density of the solid sphere by expressing its
magnetization as M (r,t) =Mz Sphere(r/R), which in spherical coordinates could be written as

M (r,t)=M ,Sphere(r/R)(cosOr — sin@é). We will have
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This azimuthal current-density confined to the surface of the sphere may equivalently be
described as a surface-current-density J(r = R,0,9)=u 1M0 sin 0 @.

Now, the magnetic field distribution of a uniformly-magnetized sphere may be obtained by
solving Maxwell’s 2" and 4™ equations in two different (albeit equivalent) ways: (i) by writing
them as VxH(r)=0 and uV-H(r)=-V-M(r) =p,§g”u)nd, and (ii)) by writing them as
VxB(r)=VxM(r)=puJ (r) and V-B(r)=0. In both cases we will find the same solution
for H(r) as given in the statement of the problem. The B-field inside the sphere will thus turn out
tobe B(r) =, H(r)+ M(r)=2M(r) =2M,3.

In the case of a hollow spherical shell carrying a constant surface-current-density
J(r=R,0,¢), the relevant Maxwell equations are VxB(r)=uJ,(0,4)0(r—-R) and
V- B(r)=0, which are the same as the aforementioned second set of equations for a uniformly-

magnetized sphere. The B-field inside as well as outside the hollow shell must therefore be
identical with the B-field of the uniformly-magnetized sphere. We conclude that, while the H-
field outside the hollow shell is the same as that of the uniformly-magnetized solid sphere, the H-

field inside the hollow shell is given by H(r)=p, 'B(r)=2M(r)/(3 u,)- The H-field energy density

inside the hollow shell is thus four times greater than that inside the uniformly-magnetized solid
sphere. When the procedure used in part (a) is repeated for the hollow shell, the resulting total

energy of the H-field is found to be (47R*/3)M2/(3u,), which is twice as large as that of the
solid sphere.

d) Using Maxwell’s 31 equation, V x E(r,t)=—JB(r,t)/0t, and the fact that the B-field inside
the hollow shell is uniform and equal to %Moé, we find the induced E-field on the ring of radius
Rsind to be given by
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The rate of exchange of EM energy density with the surface-current Jy(r=R, 6, ¢) is thus
found to be
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Integration over the surface of the sphere then yields
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Integrating the above result from M=0 to M, yields a total energy of (47R*/3)M 3/(3 M),

which is the energy extracted from the surface-current while this current is being raised from
zero to its final value. The total energy extracted from the surface current of course goes into
building the H-field both inside and outside the shell, as shown in part (c).




