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Problem 23) The scalar potential y(r) of a uniformly-polarized sphere whose dipole-moment is
given by p(t=0) = (47R%3) P Z, was found in Problem 12 to be
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As the sphere rotates, its dipole moment p(t) deviates from the z-axis, assuming the direction
of the arbitrary unit-vector U= (sinn)y+(cosn)Z in the yz-plane. Denoting the observation

point by r = xX+yy +2zZ, the angle & between p(t) and the observation point will be given by
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The scalar potential of the polarized sphere may thus be written as follows:
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As we are interested only in the z-component of the E-field of the polarized sphere, we write
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The time-dependent contribution to the total energy of the system is the integral of &E, Slipole

over the volume between the parallel-plates. Now, the term containing “yzsinz” in Eq.(4) does
not contribute to the total energy, because for every r=(x,y,2) there will be an r’'=(x,-y,2),
which cancels its contribution. As for the remaining terms, fixing z at z, where |z|>R, and
integrating over the xy- plane, we find
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The only contribution to the time-dependent E-field energy of the system thus comes from

the integral of &EoEx™" over the region —R<z<R. Inside the sphere, the volume integration of

JPo vields — 47RP cosp/(9¢,); see Eq.(4). The integral outside the sphere is given by
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Adding the contributions to the total E-field energy of the regions inside and outside the
sphere, we find
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The time-rate-of-change of the total E-field energy of the system is, therefore, given by
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Thus, as 7 increases from 0 to z, the energy stored in the E-field rises continually. At the same
time, since p(t) = (4zRP/3){sin[;(t)]y + cos[7(t)] Z} we will have
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The negative sign of E_-dp(t)/dt in the above equation indicates that, as 7 increases from 0
to =, the dipole gives energy to the system. This, of course, is the same energy that is being
stored in the E-field throughout the surrounding space. Needless to say, if the dipole reverses

course and 7 begins to decrease, the stored energy will go down, as the dipole begins to take up
energy from the surrounding E-field.




