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Solutions Opti 501 1/2 

Problem 23) The scalar potential ( )ψ r  of a uniformly-polarized sphere whose dipole-moment is 
given by 3

o ˆ( 0) (4 /3) ,t R Pπ= =p z  was found in Problem 12 to be 
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As the sphere rotates, its dipole moment p(t) deviates from the z-axis, assuming the direction 

of the arbitrary unit-vector ˆ ˆ ˆ(sin ) (cos )η η= +u y z  in the yz-plane. Denoting the observation 
point by ˆ ˆ ˆ,x y z= + +r x y z  the angle θ  between p(t) and the observation point will be given by 
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The scalar potential of the polarized sphere may thus be written as follows: 
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As we are interested only in the z-component of the E-field of the polarized sphere, we write 
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The time-dependent contribution to the total energy of the system is the integral of εoEoEz
dipole 

over the volume between the parallel-plates. Now, the term containing “yz sinη ” in Eq.(4) does 
not contribute to the total energy, because for every r =(x,y, z) there will be an r ′=(x, –y, z), 
which cancels its contribution. As for the remaining terms, fixing z at zo, where |zo| > R, and 
integrating over the xy- plane, we find 
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The only contribution to the time-dependent E-field energy of the system thus comes from 
the integral of εoEoEz

dipole over the region −R < z < R. Inside the sphere, the volume integration of 
Ez

dipole yields 3
o o4 cos /(9 );R Pπ η ε−  see Eq.(4). The integral outside the sphere is given by 
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Adding the contributions to the total E-field energy of the regions inside and outside the 
sphere, we find 
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The time-rate-of-change of the total E-field energy of the system is, therefore, given by 

 3
o o

( ) .( , )d (4 /3) sin[ ( )] tt R P E t
t t

∂ ∂ηπ η
∂ ∂

∞

−∞
=∫ r rE  (8) 

Thus, as η  increases from 0 to π , the energy stored in the E-field rises continually. At the same 
time, since 3

o
,ˆ ˆ( ) (4 /3) sin[ ( )] cos[ ( )]{ }t R P t tπ η η= +p y z  we will have 
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The negative sign of o d ( )/dt t⋅E p  in the above equation indicates that, as η  increases from 0 
to π , the dipole gives energy to the system. This, of course, is the same energy that is being 
stored in the E-field throughout the surrounding space. Needless to say, if the dipole reverses 
course and η  begins to decrease, the stored energy will go down, as the dipole begins to take up 
energy from the surrounding E-field. 


