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Problem 22) Inside the sphere Outside the sphere
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The E-field energy is thus seen to be divided between the inside and outside regions of the
sphere, with the inside region containing one-third of the total energy. Denoting the dipole

moment by p=(4zR¥3)PZ, the total energy may also be expressed as p7(8z¢,R%). This so-

called self-energy of the dipole increases without bound as the sphere radius shrinks while p is
kept constant.

b) Let the separation between the centers of the two spheres be z where 0<z<d. The
polarization will then be P, =p zZ, and the (uniform) E-field acting on the charges will be

E=-(P/3s,)=—(p,2/3¢,)Z. Let the sphere of positive charge be the one that is being pulled
away, while the other sphere is kept in place. The total charge of the sphere, Q= (4zR3)p,,
multiplied by the E-field, then gives the required force as F=-QE = (47p’R%/9¢)zZ. The
integral of this force from z=0 to d then yields the total energy needed to pull the charges apart,
as follows:
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The final expression is the same as that obtained in part (a) by integrating the E-field energy
density of the dipole over the entire space.




