Problem 4.12) We begin by computing the Fourier transform of the uniformly-polarized
spherical particle, as follows:

P(k) = fff_oo P(r) exp(—ik-r)dr = er=0 f;T:OPoﬁ exp(—ikr cos ) 2rr? sin 6 drd@

= ZnPozf , Sin 8 exp(—ikr cos 0) do]dr

—ikr variable: x = kr
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Integration by parts | > = (4mPy2/k?) fOkR x sin(x) dx = (4nPy2/k3) [—x cos x|kR + fOkR COS X dx]

= 41PyZ [sin(kR) — kR cos(kR)]/k3. (1)
Given that péi?md (r,t) = =V - P(r,t), in the Fourier domain we will have
p& (k) = —ik- P(k) = —i4mP,y(2 - k)[sin(kR) — kR cos(kR)]/k?. )

Now, the scalar potential in the Fourier domain is known to be

Yk = pl, k) [ (eok?). 3)

Therefore, inverse Fourier transformation of ¢ (k) yields
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To evaluate the integral appearing in the above equation, note that sin(ak)/k is the Fourier
transform of “%Rect(x/2a), which implies that d[sin(ak)/k]/dk is the Fourier transform of
—(ix/2)Rect(x/2a). It is not difficult to show that [* F(k)G(k)dk = 2m [*_f(x)g(—x)dx
for any pair of functions f(x) and g(x) whose (one-dimensional) Fourier transforms are
specified as F (k) and G (k). Finally, taking note of the fact that the integrand in Eq.(4) is an even
function of k, we write

Jm%[sin(kR)/k] X % [sin(kr)/k]dk = nfjooo(—ix/Z)Rect(x/ZR) x (ix/2)Rect(—x/2r)dx
0

= (n/4) [™TR x2dx = (/6) min(r3,R?).  (5)

min(r, R)



Upon substitution from Eq.(5) into Eq.(4), and also replacing Z - # with cos 6, we find

Pyrcos8/(3¢gy); r <R,
Y(r) = { s . (6)
PyR” cos 0/(3¢&,7%); r > R.
Inside the spherical particle, Y(r) = (Py/3¢&y)z. Therefore,
E(r) =-Vy(r) =—-(0y/02)2 = —(P,/3&,)2. (7)
Outside the particle,
~ 3 _
E(T)z—71/’(1‘)=—%?—%0=%(20059?+51n90) (8)

Thus, from outside the sphere, it appears as though a point-dipole py2 = (47/3)R3Py2 is
residing at the origin of the coordinate system. Inside the particle, as can be seen from Eq.(7), the
E-field is uniform and oriented opposite to the direction of polarization.

Digression: We prove below that ffoooF (k)G(k)dk = 2r f_oooo f(x)g(—=x)dx for any pair of functions
f(x) and g(x), whose (one-dimensional) Fourier transforms are specified as F (k) and G (k).

IZ FU)Gk)dk = [7 [[7 f(x) exp(—ikx) dx|G(k)dk

= [0, fS2, 60 exp(=ikx) dkdx = 27 [7 f()g(=)dx.  (9)
Also, it is easy to show that, if F (k) is the Fourier transform of f(x), then dF (k)/dk is the Fourier
transform of —ixf (x). This is because differentiating F (k) = f_oooo f(x) exp(—ikx) dx with respect to k
yields
dF(k)/dk = [ f(x)(—ix) exp(—ikx) dx = F{—ixf (x)}. (10)

We have used both Eq.(9) and Eq.(10) in evaluating the definite integral given by Eq.(5).




