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Problem 3.30) a) In the limit when α →∞, the symmetric function gα(x) becomes tall and 
narrow, with an area that is always equal to 2. Therefore, ( ) 2 ( ).g x xαα
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In the limit α →∞, all the terms under the summation sign vanish, leaving 2f0 = 2f (x = 0) as 
the value of the integral. This, of course, is just a manifestation of the sifting property of 2δ (x). 
 
c) The function hβ (x) is the derivative of −½√β exp(−β x2), which approaches −½√p δ (x) in the 
limit when β →∞. Therefore, the limit of hβ (x) is the delta-function-derivative −½√p δ '(x). 
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When β →∞, the terms under the summation sign vanish, leaving ½√p f1= ½√p df (x)/dx|x=0 
as the value of the integral. This is nothing more nor less than the sifting property of −½√p δ '(x). 
 

Odd terms omitted, as 
they integrate to zero. 

Even terms omitted, as 
they integrate to zero. 
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