Problem 3.30) a) In the limit when $\alpha \rightarrow \infty$, the symmetric function $g_{\alpha}(x)$ becomes tall and narrow, with an area that is always equal to 2. Therefore, $\lim_{\alpha \to \infty} g_{\alpha}(x) = 2\delta(x)$. $\lim_{x\to\infty} g_{\alpha}(x)$ = Odd terms omitted, as

b)
$$
\int_{-\infty}^{\infty} f(x)g_{\alpha}(x)dx = \int_{-\infty}^{\infty} \sum_{n=0}^{\infty} f_n \frac{x^n}{n!} \alpha \exp(-\alpha |x|)dx = 2\alpha \int_{0}^{\infty} \sum_{n=0}^{\infty} f_{2n} \frac{x^{2n}}{(2n)!} \exp(-\alpha x)dx
$$

= $2\alpha \sum_{n=0}^{\infty} \frac{f_{2n}}{(2n)!} \int_{0}^{\infty} x^{2n} \exp(-\alpha x) dx = 2\alpha \sum_{n=0}^{\infty} \frac{f_{2n}}{\alpha^{2n+1}} = 2f_0 + 2 \sum_{n=1}^{\infty} \frac{f_{2n}}{\alpha^{2n}}.$

In the limit $\alpha \rightarrow \infty$, all the terms under the summation sign vanish, leaving $2f_0 = 2f(x=0)$ as the value of the integral. This, of course, is just a manifestation of the sifting property of $2\delta(x)$.

c) The function $h_\beta(x)$ is the derivative of $-\frac{1}{2}\sqrt{\beta}$ exp($-\beta x^2$), which approaches $-\frac{1}{2}\sqrt{\pi} \delta(x)$ in the limit when $\beta \rightarrow \infty$. Therefore, the limit of $h_\beta(x)$ is the delta-function-derivative $-\frac{1}{2}\sqrt{\pi} \delta'(x)$. Even terms omitted, as

d)
$$
\int_{-\infty}^{\infty} f(x) h_{\beta}(x) dx = \int_{-\infty}^{\infty} \sum_{n=0}^{\infty} f_n \frac{x^n}{n!} \beta^{3/2} x \exp(-\beta x^2) dx = 2\beta^{3/2} \int_{0}^{\infty} \sum_{n=0}^{\infty} f_{2n+1} \frac{x^{2n+1}}{(2n+1)!} x \exp(-\beta x^2) dx
$$

\n
$$
= 2\beta^{3/2} \sum_{n=0}^{\infty} \frac{f_{2n+1}}{(2n+1)!} \int_{0}^{\infty} x^{2n+2} \exp(-\beta x^2) dx = 2\beta^{3/2} \sum_{n=0}^{\infty} \frac{f_{2n+1}}{(2n+1)!} \frac{(2n+1)!!\sqrt{\pi}}{2^{n+2} \beta^{n+\frac{3}{2}}}
$$

\n
$$
= \frac{1}{2} \sqrt{\pi} f_1 + \frac{1}{2} \sqrt{\pi} \sum_{n=1}^{\infty} \frac{f_{2n+1}}{n! (4\beta)^n}.
$$

When $\beta \rightarrow \infty$, the terms under the summation sign vanish, leaving $\frac{1}{2}\sqrt{\pi}f_1 = \frac{1}{2}\sqrt{\pi} df(x)/dx|_{x=0}$ as the value of the integral. This is nothing more nor less than the sifting property of $-\frac{1}{2}\sqrt{\pi} \delta'(\mathbf{x})$.