Opti 501 Solutions

Solution to Problem 26) In the limit of large x, we use Eqs.(37) and (38) to arrive at

$$Y_{\nu}(x)J_{\nu+1}(x) - J_{\nu}(x)Y_{\nu+1}(x) \cong \frac{2}{\pi x}\sin(x - \frac{1}{2}\nu\pi - \frac{1}{4}\pi)\cos(x - \frac{1}{2}\nu\pi - \frac{3}{4}\pi)$$

$$-\frac{2}{\pi x}\cos(x - \frac{1}{2}\nu\pi - \frac{1}{4}\pi)\sin(x - \frac{1}{2}\nu\pi - \frac{3}{4}\pi)$$

$$= \frac{2}{\pi x}\left[\sin^{2}(x - \frac{1}{2}\nu\pi - \frac{1}{4}\pi) + \cos^{2}(x - \frac{1}{2}\nu\pi - \frac{1}{4}\pi)\right]$$

$$= \frac{2}{\pi x}.$$
(1)

Next, we differentiate the function $Y_{\nu}(x)J_{\nu+1}(x) - J_{\nu}(x)Y_{\nu+1}(x)$ with respect to x, and use the identities in Eqs.(41) and (42) to write

$$\frac{d}{dx}[Y_{\nu}(x)J_{\nu+1}(x) - J_{\nu}(x)Y_{\nu+1}(x)]
= Y_{\nu}'(x)J_{\nu+1}(x) + Y_{\nu}(x)J_{\nu+1}'(x) - J_{\nu}'(x)Y_{\nu+1}(x) - J_{\nu}(x)Y_{\nu+1}'(x)
= \left[\left(\frac{\nu}{x}\right)Y_{\nu}(x) - Y_{\nu+1}(x)\right]J_{\nu+1}(x) + Y_{\nu}(x)\left[J_{\nu}(x) - \left(\frac{\nu+1}{x}\right)J_{\nu+1}(x)\right]
- \left[\left(\frac{\nu}{x}\right)J_{\nu}(x) - J_{\nu+1}(x)\right]Y_{\nu+1}(x) - J_{\nu}(x)\left[Y_{\nu}(x) - \left(\frac{\nu+1}{x}\right)Y_{\nu+1}(x)\right]
= -\frac{1}{x}[Y_{\nu}(x)J_{\nu+1}(x) - J_{\nu}(x)Y_{\nu+1}(x)].$$
(2)

The above equation may now be rewritten as follows:

$$[Y_{\nu}(x)J_{\nu+1}(x) - J_{\nu}(x)Y_{\nu+1}(x)]'/[Y_{\nu}(x)J_{\nu+1}(x) - J_{\nu}(x)Y_{\nu+1}(x)] = -1/x.$$
 (3)

Integrating both sides of Eq.(3) with respect to x, and denoting the constant of integration by c, we find

$$\ln[Y_{\nu}(x)J_{\nu+1}(x) - J_{\nu}(x)Y_{\nu+1}(x)] = -\ln x + c. \tag{4}$$

Consequently,

$$Y_{\nu}(x)J_{\nu+1}(x) - J_{\nu}(x)Y_{\nu+1}(x) = c'/x, \tag{5}$$

where $c' = \exp(c)$ signifies another way of writing the constant of integration. A comparison of Eq.(5) with Eq.(1) now reveals that $c' = 2/\pi$, thus completing the proof.