Problem 20) The Taylor series expansion of J,(x) around x=0 is given by Eq.(25). As for the
integral representation of Jn(X), we use the standard recipe for Taylor series expansion of an
arbitrary function such as f(x) around x=Xx,, namely,
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The m™ derivative of the integral, evaluated at x=0, is found to be
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We thus have
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Clearly, the definite integral j: cos(nd)cos"®do appearing in Eq.(3) must vanish when m<n if

the two sums are to be equal. We also note that, over the interval (0, ), the function cos(n@) is
even with respect to the center of the interval, & =%z, when n is even, and odd when n is odd.
Similarly, cos™@ is even with respect to =%z when m is even, and odd when mis odd. The
integral, therefore, vanishes when n is even while mis odd, or vice-versa. Only when mand n are
both even, or both odd, does the integral have a non-zero value. Combining the above arguments,
we see that the only values of mthat contribute to the second sum in Eq.(3) are those that can be

written as m=n+2k for k=0,1,2,3,.... Equation (3) may thus be written as follows:
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Equating the coefficients of x™*% on both sides of Eq.(4), noting that i=(-1)*, yields
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The above results may thus be summarized as follows:
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The above result is in agreement with Gradshteyn & Ryzhik’s integral 3.631-17 given below.
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where
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