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Problem 20) The Taylor series expansion of Jn(x) around x = 0 is given by Eq.(25). As for the 
integral representation of Jn(x), we use the standard recipe for Taylor series expansion of an 
arbitrary function such as f (x) around x = xo, namely, 

 o
o o

1

d ( )/d
( ) ( ) ( ) .

!
|m m
x x m

m

f x x
f x f x x x

m
=

=

∞
= + −∑  (1) 

The m th derivative of the integral, evaluated at x = 0, is found to be 
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We thus have 
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Clearly, the definite integral 
0
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θ θ θ∫  appearing in Eq.(3) must vanish when m < n if 

the two sums are to be equal. We also note that, over the interval (0,π), the function cos(nθ ) is 
even with respect to the center of the interval, θ = ½π , when n is even, and odd when n is odd. 
Similarly, cosmθ  is even with respect to θ = ½π  when m is even, and odd when m is odd. The 
integral, therefore, vanishes when n is even while m is odd, or vice-versa. Only when m and n are 
both even, or both odd, does the integral have a non-zero value. Combining the above arguments, 
we see that the only values of m that contribute to the second sum in Eq.(3) are those that can be 
written as m =n+2k for k = 0,1,2,3,…. Equation (3) may thus be written as follows: 
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Equating the coefficients of xn+2k on both sides of Eq.(4), noting that i2k = (−1)k, yields 
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The above results may thus be summarized as follows: 
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The above result is in agreement with Gradshteyn & Ryzhik’s integral 3.631-17 given below. 
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where 
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∫  (7b) 

 


