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Addendum to Problem 1: One has to recognize the nature of the 𝛿𝛿-function and its derivative, 
the 𝛿𝛿′-function, in order to get correct results from these types of calculation. First let us start 
with 𝛿𝛿(𝑥𝑥). This function has a narrow width, 𝛽𝛽, and a height equal to 1 𝛽𝛽⁄ . So, when we try to 
calculate, say, 𝛿𝛿(2𝑥𝑥), we compress the 𝑥𝑥-axis toward the origin by a factor of 2. This makes the 
width of 𝛿𝛿(2𝑥𝑥) equal to 𝛽𝛽 2⁄ , but its height is still 1 𝛽𝛽⁄ . The area under the function has, 
therefore, shrunk by a factor of 2, and that is why 𝛿𝛿(2𝑥𝑥) is equal to ½𝛿𝛿(𝑥𝑥). 

Now, consider the function 𝛿𝛿′(𝑥𝑥), which has width 𝛽𝛽 and height ± 1 𝛽𝛽2⁄ . When we 
compress the 𝑥𝑥-axis toward the origin by a factor of 2, the width of 𝛿𝛿′ becomes 𝛽𝛽 2⁄ , but its 
height remains the same. To restore the function to a true 𝛿𝛿′(∙), i.e., one which has the sifting 
property ∫ 𝑔𝑔(𝑥𝑥)𝛿𝛿′(𝑥𝑥)d𝑥𝑥∞

−∞ = −𝑔𝑔′(0), we must multiply the compressed function by 22 = 4, 
because the height of 𝛿𝛿′(∙) is the square of 1 𝛽𝛽⁄ . 

Next suppose we take an arbitrary-looking function 𝑓𝑓(𝑥𝑥) that represents the 𝛿𝛿-function, 
namely, a function 𝑓𝑓(𝑥𝑥) that is narrow, tall, symmetric around the origin 𝑥𝑥 = 0, and has unit 
area. Suppose we would like to find the derivative of 𝑓𝑓(2𝑥𝑥) with respect to 𝑥𝑥, namely, 
d𝑓𝑓(2𝑥𝑥) d𝑥𝑥⁄ . This is going to be 2𝑓𝑓′(2𝑥𝑥). Here the coefficient 2 multiplying 𝑓𝑓′(∙) is the 
derivative of 2𝑥𝑥, and 𝑓𝑓′(2𝑥𝑥) is meant to indicate that one first finds 𝑓𝑓′(𝑥𝑥), then compresses the 
𝑥𝑥-axis toward the origin by a factor of 2. Now, 𝑓𝑓′(𝑥𝑥), of course, represents 𝛿𝛿′(𝑥𝑥), because 𝑓𝑓(𝑥𝑥) 
originally represented 𝛿𝛿(𝑥𝑥), but compressing the 𝑥𝑥-axis by a factor of 2 turns this 𝑓𝑓′(∙) into 
¼𝛿𝛿′(𝑥𝑥), as explained above. When this last result is multiplied by the coefficient 2 in the 
preceding formula (remember, the coefficient 2 that was the derivative with respect to 𝑥𝑥 of the 
argument 2𝑥𝑥 of the function), the final answer is found to be ½𝛿𝛿′(𝑥𝑥). 

In deriving the formula for 𝛿𝛿′(𝑎𝑎𝑥𝑥 + 𝑏𝑏), one may use any desired function 𝑓𝑓(𝑥𝑥) to represent 
𝛿𝛿(𝑥𝑥), but one must always take into account the peculiar nature of 𝛿𝛿′(∙), namely, a function 
whose height is the inverse square of its width and, therefore, the simple act of compressing its 
𝑥𝑥-axis by a (positive) factor 𝑎𝑎 results in the function (1 𝑎𝑎2⁄ )𝛿𝛿′(𝑥𝑥). When this coefficient 1 𝑎𝑎2⁄  is 
multiplied by the derivative of the argument, namely, d(𝑎𝑎𝑥𝑥 + 𝑏𝑏) d𝑥𝑥⁄ = 𝑎𝑎, and when the sign of 
𝑎𝑎 is properly accounted for, one obtains the correct formula, namely, 

 d
d𝑥𝑥
𝛿𝛿(𝑎𝑎𝑥𝑥 + 𝑏𝑏) = 1

|𝑎𝑎| 𝛿𝛿
′[𝑥𝑥 + (𝑏𝑏 𝑎𝑎⁄ )]. 
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