

 $\langle \langle$

 $\left\langle \right\rangle$

Addendum to Problem 1: One has to recognize the nature of the δ -function and its derivative, the δ' -function, in order to get correct results from these types of calculation. First let us start with $\delta(x)$. This function has a narrow width, β , and a height equal to $1/\beta$. So, when we try to calculate, say, $\delta(2x)$, we compress the x-axis toward the origin by a factor of 2. This makes the width of $\delta(2x)$ equal to $\beta/2$, but its height is still $1/\beta$. The area under the function has, therefore, shrunk by a factor of 2, and that is why $\delta(2x)$ is equal to $\frac{1}{2}\delta(x)$.

Now, consider the function $\delta'(x)$, which has width β and height $\pm 1/\beta^2$. When we compress the x-axis toward the origin by a factor of 2, the width of δ' becomes $\beta/2$, but its height remains the same. To restore the function to a true $\delta'(\cdot)$, i.e., one which has the sifting property $\int_{-\infty}^{\infty} g(x) \delta'(x) dx = -g'(0)$, we must multiply the compressed function by $2^2 = 4$, because the height of $\delta'(\cdot)$ is the *square* of $1/\beta$.

Next suppose we take an arbitrary-looking function $f(x)$ that represents the δ -function, namely, a function $f(x)$ that is narrow, tall, symmetric around the origin $x = 0$, and has unit area. Suppose we would like to find the derivative of $f(2x)$ with respect to x, namely, $df(2x)/dx$. This is going to be $2f'(2x)$. Here the coefficient 2 multiplying $f'(\cdot)$ is the derivative of 2x, and $f'(2x)$ is meant to indicate that one first finds $f'(x)$, then compresses the x-axis toward the origin by a factor of 2. Now, $f'(x)$, of course, represents $\delta'(x)$, because $f(x)$ originally represented $\delta(x)$, but compressing the x-axis by a factor of 2 turns this $f'(\cdot)$ into $\frac{1}{4}\delta'(x)$, as explained above. When this last result is multiplied by the coefficient 2 in the preceding formula (remember, the coefficient 2 that was the derivative with respect to x of the argument 2x of the function), the final answer is found to be $\frac{1}{2}\delta'(x)$.

In deriving the formula for $\delta'(ax + b)$, one may use any desired function $f(x)$ to represent $\delta(x)$, but one must always take into account the peculiar nature of $\delta'(\cdot)$, namely, a function whose height is the *inverse square* of its width and, therefore, the simple act of compressing its x-axis by a (positive) factor a results in the function $(1/a^2)\delta'(x)$. When this coefficient $1/a^2$ is multiplied by the derivative of the argument, namely, $d(ax + b)/dx = a$, and when the sign of α is properly accounted for, one obtains the correct formula, namely,

$$
\frac{\mathrm{d}}{\mathrm{d}x}\delta(ax+b)=\frac{1}{|a|}\delta'[x+(b/a)].
$$