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Opti 501 Solutions 1/2 

Problem 2.64) a) For a relativistic treatment of the problem, define 𝛽𝛽0,1 = 𝑉𝑉0,1 𝑐𝑐⁄  and 𝛾𝛾0,1 =
1 �1 − (𝑉𝑉0,1 𝑐𝑐⁄ )2⁄ . The conservation laws of energy and linear momentum may then be written 
as follows: 
 ℰ0 + 𝛾𝛾0𝑀𝑀𝑐𝑐2 = ℰ1 + 𝛾𝛾1𝑀𝑀𝑐𝑐2, (1a) 

 (ℰ0 𝑐𝑐⁄ ) + 𝛾𝛾0𝑀𝑀𝑉𝑉0 = −(ℰ1 𝑐𝑐⁄ ) + 𝛾𝛾1𝑀𝑀𝑉𝑉1. (1b) 

Note that ℰ0 and 𝑀𝑀 can have arbitrary (positive) values, and that 𝑉𝑉0 may be positive, zero, or 
negative, provided that |𝑉𝑉0| < 𝑐𝑐. Defining 𝛼𝛼0,1 = ℰ0,1 𝑀𝑀𝑐𝑐2⁄ , the above equations can be written 
in somewhat simplified form as 

 𝛼𝛼0 + 𝛾𝛾0 = 𝛼𝛼1 + 𝛾𝛾1, (2a) 

 𝛼𝛼0 + 𝛾𝛾0𝛽𝛽0 = −𝛼𝛼1 + 𝛾𝛾1𝛽𝛽1. (2b) 

b) In the non-relativistic approximation, we have 

 ℰ0 + ½𝑀𝑀𝑉𝑉02  = ℰ1 + ½𝑀𝑀𝑉𝑉12, (3a) 

 (ℰ0 𝑐𝑐⁄ ) + 𝑀𝑀𝑉𝑉0 = −(ℰ1 𝑐𝑐⁄ ) + 𝑀𝑀𝑉𝑉1. (3b) 
After normalization, Eqs.(3a) and (3b) become 

 𝛼𝛼0 + ½𝛽𝛽02  = 𝛼𝛼1 + ½𝛽𝛽12, (4a) 

 𝛼𝛼0 + 𝛽𝛽0 = −𝛼𝛼1 + 𝛽𝛽1. (4b) 
c) Adding Eq.(4a) to Eq.(4b) and rearranging the terms, we find 

 𝛽𝛽12 + 2𝛽𝛽1 − (4𝛼𝛼0 + 2𝛽𝛽0 + 𝛽𝛽02) = 0. (5) 

Considering that |𝛽𝛽1| = |𝑉𝑉1| 𝑐𝑐⁄  must be less than 1.0, only one of the two solutions of the 
above quadratic equation in 𝛽𝛽1 will be acceptable, that is, 

 𝛽𝛽1 = �1 + 4𝛼𝛼0 + 2𝛽𝛽0 + 𝛽𝛽02 − 1. (6) 

Substitution into Eq.(4b) then yields 

 ℰ1 = 𝑀𝑀𝑐𝑐2(𝛽𝛽1 − 𝛽𝛽0) − ℰ0. (7) 

d) Given that, in the non-relativistic regime, 𝛼𝛼0 ≪ 1, 𝛽𝛽0 ≪ 1, and 𝛽𝛽1 ≪ 1, we can approximate 
𝛽𝛽1 of Eq.(6) by invoking the Taylor series expansion √1 + 𝜀𝜀 = 1 + ½𝜀𝜀 −⅛𝜀𝜀2 + ⋯, as follows: 

 𝛽𝛽1 = (2𝛼𝛼0 + 𝛽𝛽0 + ½𝛽𝛽02) −⅛(4𝛼𝛼0 + 2𝛽𝛽0 + 𝛽𝛽02)2 + ⋯ 

 = 2𝛼𝛼0 + 𝛽𝛽0 − 2𝛼𝛼02 − 2𝛼𝛼0𝛽𝛽0 − (𝛼𝛼0 + ½𝛽𝛽0 + ⅛𝛽𝛽02)𝛽𝛽02 + ⋯ 

 ≅ 𝛽𝛽0 + 2𝛼𝛼0(1 − 𝛼𝛼0 − 𝛽𝛽0). (8) 

Thus, to a good approximation, Eq.(8) provides an expression for the final velocity 𝑉𝑉1 of the 
mirror in terms of its initial velocity 𝑉𝑉0, the energy ℰ0 of the light bullet, and the mass 𝑀𝑀 of the 
mirror. Substitution from Eq.(8) into Eq.(7) yields the final energy of the light pulse, as follows: 

ignore high-order terms 
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 ℰ1 ≅ 2ℰ0(1 − 𝛼𝛼0 − 𝛽𝛽0) − ℰ0         →         ℰ1 ℰ0⁄ ≅ 1 − 2(ℰ0 𝑀𝑀𝑐𝑐2⁄ ) − 2(𝑉𝑉0 𝑐𝑐⁄ ). (9) 

In the quantum picture of light, the incident pulse contains 𝑁𝑁 photons of (angular) frequency 
𝜔𝜔0 and energy ℏ𝜔𝜔0, so that ℰ0 = 𝑁𝑁ℏ𝜔𝜔0. Upon encountering the mirror, all 𝑁𝑁 photons are 
reflected, with their frequencies Doppler-shifted to 𝜔𝜔1, so that ℰ1 = 𝑁𝑁ℏ𝜔𝜔1. Thus, the Doppler 
shift of the optical frequency upon perfect reflection from a moving (or stationary) mirror fully 
accounts for the change of the pulse energy from ℰ0 to ℰ1. If the term 2ℰ0 (𝑀𝑀𝑐𝑐2)⁄  in Eq.(9) 
happens to be negligible, then the Doppler shift will be ∆𝜔𝜔 = 𝜔𝜔1 − 𝜔𝜔0 ≅ −2(𝑉𝑉0 𝑐𝑐⁄ )𝜔𝜔0. Note 
that 𝑉𝑉0 could be positive or negative, and that, therefore, the Doppler shift could decrease or 
increase the frequency of the light pulse upon reflection. For a stationary mirror (i.e., 𝑉𝑉0 = 0), 
the kinetic energy acquired by the mirror after reflection of the light pulse will be 2ℰ02 (𝑀𝑀𝑐𝑐2)⁄ . 
The more massive the stationary mirror, the smaller will be the fraction of the energy of the pulse 
that is converted to the mirror’s kinetic energy. Also, the greater the energy of the incident light 
pulse, the greater will be the fraction of its energy converted to the kinetic energy of the mirror. 
 
Digression: In the relativistic treatment of part (a), adding Eq.(2a) to Eq.(2b) yields 

 2𝛼𝛼0 + 𝛾𝛾0(1 + 𝛽𝛽0) = 𝛾𝛾1(1 + 𝛽𝛽1) = �(1 + 𝛽𝛽1) (1 − 𝛽𝛽1)⁄ . (10) 

The above equation may now be solved to yield 𝛽𝛽1, as follows: 

 1+𝛽𝛽1
1−𝛽𝛽1

= [2𝛼𝛼0 + 𝛾𝛾0(1 + 𝛽𝛽0)]2         →           𝛽𝛽1 = [2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]2−1
[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]2+1

 · (11) 

Having found 𝛽𝛽1, we can now derive an expression for 𝛾𝛾1, namely, 

 1 − 𝛽𝛽12 = �[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]2+1�2− �[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]2−1�2

{[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]2+1}2     →     �1 − 𝛽𝛽12 = 2[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]
[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]2+1

 

    →        𝛾𝛾1 = 1 �1 − 𝛽𝛽12⁄ = [2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]2+1
2[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]  · (12) 

Substitution for 𝛾𝛾1 into Eq.(2a) now yields a solution for 𝛼𝛼1, as follows: 

 𝛼𝛼1 = 𝛼𝛼0 + 𝛾𝛾0 − 𝛾𝛾1 = 𝛼𝛼0 + 𝛾𝛾0 −
[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]2+1
2[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)] = 𝛼𝛼0 + 2𝛾𝛾0[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]−[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]2−1

2[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]  

 = 𝛼𝛼0 + 4𝛼𝛼0𝛾𝛾0+2𝛾𝛾02(1+𝛽𝛽0)−4𝛼𝛼02−𝛾𝛾02(1+𝛽𝛽0)2−4𝛼𝛼0𝛾𝛾0(1+𝛽𝛽0)−1
2[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)] = 𝛼𝛼0 + −4𝛼𝛼02−4𝛼𝛼0𝛽𝛽0𝛾𝛾0+𝛾𝛾02(1+𝛽𝛽0)(1−𝛽𝛽0)−1

2[2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0)]  

 = 𝛼𝛼0 −
2𝛼𝛼02+2𝛼𝛼0𝛽𝛽0𝛾𝛾0
2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0) = 𝛼𝛼0𝛾𝛾0(1−𝛽𝛽0)

2𝛼𝛼0+𝛾𝛾0(1+𝛽𝛽0) = 𝛼𝛼0(1−𝛽𝛽0) (1+𝛽𝛽0)⁄
1+2𝛼𝛼0�(1−𝛽𝛽0) (1+𝛽𝛽0)⁄

· (13) 

Consequently, 

 ℰ1
ℰ0

= (1−𝛽𝛽0) (1+𝛽𝛽0)⁄
1+2(ℰ0 𝑀𝑀𝑐𝑐2⁄ )�(1−𝛽𝛽0) (1+𝛽𝛽0)⁄

· (14) 

If the mirror happens to be massive, ℰ0 𝑀𝑀𝑐𝑐2⁄ → 0, in which case the above equation yields 
the standard Doppler-shift formula for the ratio of the reflected to incident energies (or 
frequencies). If the initial mirror velocity happens to be zero, then ℰ1 = ℰ0 [1 + 2(ℰ0 𝑀𝑀𝑐𝑐2⁄ )]⁄  
reveals the loss of optical energy upon reflection from a mirror with a finite mass. 
 


