Problem 2.60) a) The divergence operator ∇ acting on the *D*-field means that the *D*-field is integrated over the surface of a small volume element surrounding an arbitrary point *r* in space at a fixed time *t*; the integral must subsequently be normalized by the volume of the chosen element to yield the divergence of the *D*-field. According to Maxwell's $1st$ equation, the result of this operation on the *D*-field is going to be equal to the density of free charge, ρ_{free} , at that point *r* in space and at that instant *t* of time. The displacement field $D(r, t)$ is related to the permittivity of free space ε_0 , the local *E*-field $E(r, t)$, and the local polarization $P(r, t)$ as follows: $D(r, t)$ = $\varepsilon_0 E(r,t) + P(r,t)$.

The boundary condition associated with Maxwell's $1st$ equation states that the discontinuity in the perpendicular component D_{\perp} of the *D*-field at any given surface or interface must be equal to the local surface-charge-density $\sigma_{\text{free}}(r,t)$. Thus at a given point (r, t) in space-time, $D_{\perp}(r^{+}, t)$ immediately above the surface minus $D_{\perp}(r^{-}, t)$ immediately below the surface must be equal in magnitude to $\sigma_{\text{free}}(\mathbf{r},t)$ at the surface.

b) The curl operator $\nabla \times$ acting on the *H*-field means that an arbitrarily small loop must be chosen around the point *r* in space, the integral of the *H*-field around the loop evaluated, then normalized by the surface area of the loop. (The value used for the *H*-field at all points around the loop must be obtained at the same instant of time, t .) According to Maxwell's $2nd$ equation, the result of the above operation will be equal to the sum of two terms:

- i) the projection, on the surface-normal of the loop, of the local free-current-density, $J_{\text{free}}(r, t)$;
- ii) the projection, on the surface-normal of the loop, of the time-derivative of the local $D(r, t)$.

The direction of the aforementioned surface-normal is chosen in accordance with the righthand rule, in conjunction with the direction of travel around the loop when evaluating the integral of the *H*-field. The above description of Maxwell's 2nd equation applies to all small loops, irrespective of the shape and/or orientation of the loop.

The boundary condition associated with Maxwell's $2nd$ equation states that the discontinuity in the tangential component H_{\parallel} of the *H*-field at any given surface or interface must be equal in magnitude and perpendicular in direction to the local surface-current-density J_s free(r ,*t*). Thus, at a given point (r, t) in space-time, $H_{\parallel}(r^+, t)$ immediately above the surface minus $H_{\parallel}(r^-, t)$ immediately below the surface must be equal to $J_{s_free}(r, t) \times \hat{n}$ at the surface, where \hat{n} is the surface-normal at *r*.

c) The curl operation was described in part (b) above. The magnetic induction $B(r, t)$ is related to the permeability μ_0 of free space, the local *H*-field $H(r,t)$, and the local magnetization $M(r,t)$ through the following relation: $B(r, t) = \mu_0 H(r, t) + M(r, t)$. Thus, according to Maxwell's 3rd equation, the integral of the *E*-field around any small loop surrounding the point *r* and evaluated at time *t*, when normalized by the area of the loop, will be equal in magnitude and opposite in direction to the projection on the surface-normal of the loop of the time-derivative of the local *B*field. The time-derivative of the *B*-field, of course, is the difference between $B(r,t)$ and *B*($\mathbf{r}, t + \Delta t$), normalized by Δt , in the limit with Δt is sufficiently small.

The boundary condition associated with Maxwell's $3rd$ equation states that the tangential component E_{\parallel} of the *E*-field at any given surface or interface must be continuous. Thus, at a

given point (r, t) in space-time, $E_{\parallel}(r^+, t)$ immediately above the surface must be equal to $E_{\parallel}(r^-, t)$ immediately below the surface.

d) According to Maxwell's 4^{th} equation, the divergence of $B(r, t)$ is always and everywhere equal to zero, meaning that the integral of $B(r, t)$ over the surface enclosing *any* volume of space (large or small) is identically zero, provided that the *B*-field at all points on the surface is evaluated at the same instant of time, *t*. Thus, whatever magnetic flux enters the volume, must also leave the volume, ensuring that no sources and/or sinks of the *B*-field reside within the volume. This is equivalent to saying that no magnetic monopoles exist in Nature.

The boundary condition associated with Maxwell's $4th$ equation states that no discontinuities exist in the perpendicular component B_{\perp} of the *B*-field at surfaces and interfaces. Thus, at a given point (r, t) in space-time, $B_{\perp}(r^+, t)$ immediately above the surface is exactly equal to $B_{\perp}(r^-, t)$ immediately below the surface.