O	nti	501	
	P U	001	

Solutions

Problem 2.59) Imagine a cylindrical can of arbitrary length *L* and radius *R*, where $R_1 < R < R_2$, centered on the *z*-axis. The integral of the *E*-field over the closed cylindrical surface must be zero because (i) inside the metallic shell there cannot be any *E*-field, and (ii) E_z must vanish at the top and bottom facets of the can (because of symmetry). Therefore, the integral form of Maxwell's 1^{st} equation, namely, $\oint \mathbf{D} \cdot d\mathbf{s} = Q_{\text{total}}$, requires that the total free charge Q_{total} contained within the can must be zero.

Since the wire has a charge of $\lambda_0 L$ inside the can, the inner surface of the metallic shell must have an equal and opposite charge. The surface charge density on the inner surface of the shell is thus $\sigma_1 = -(\lambda_0 L)/(2\pi R_1 L) = -\lambda_0/(2\pi R_1)$ [coulomb/m²]. Since the shell is initially chargeneutral, the same amount of charge, albeit with opposite sign, must appear on its external surface. Therefore, $\sigma_2 = \lambda_0/(2\pi R_2)$ [coulomb/m²].