Problem 2.55) Consider a cylindrical can of arbitrary radius *R* and arbitrary length *L* centered on the wire, as shown in the figure below. We apply the integral form of Maxwell's $4th$ equation, $\nabla \cdot \mathbf{B} = 0$, to this can. Using Gauss's theorem, the integral form is found to be: $\oint \mathbf{B} \cdot d\mathbf{s} = 0$. In the absence of magnetism, we have $M = 0$ and $B = \mu_0 H$. Consequently, Maxwell's 4th equation demands that $\oint \mathbf{H} \cdot d\mathbf{s} = 0$.

On the closed surface of the cylindrical can, only two components of the *H*-field contribute to the surface integral: (i) on the top and bottom facets, H_z has nonzero integrals; (ii) on the cylindrical surface, H_o makes a nonzero contribution to the integral. However, symmetry indicates that the contribution of H_z to the top facet is exactly cancelled out by its contribution to the bottom facet – because the value of H_z (whatever it may be) cannot depend on the *z*-coordinate. As for H_{ρ} , its magnitude must be the same everywhere on the cylindrical surface, again

because of symmetry; its contribution to the surface integral will thus be $2\pi R L H_0$. The total integral of the *H*-field over the surface of the can is, therefore, $2\pi R L H_0$, which must be zero in accordance with Maxwell's 4th equation. We conclude that $H_{\rho}(\rho, \phi, z)$ must be zero everywhere.