Problem 2.54)

$$E(\mathbf{r}, t) = \operatorname{Real}\{E_0 \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)]\}$$

= $\exp(-\mathbf{k}'' \cdot \mathbf{r}) \operatorname{Real}\{(E'_0 + iE''_0) \exp[i(\mathbf{k}' \cdot \mathbf{r} - \omega t)]\}$
= $\exp(-\mathbf{k}'' \cdot \mathbf{r}) \operatorname{Real}\{(E'_0 + iE''_0)[\cos(\mathbf{k}' \cdot \mathbf{r} - \omega t) + i\sin(\mathbf{k}' \cdot \mathbf{r} - \omega t)]\}$
= $\exp(-\mathbf{k}'' \cdot \mathbf{r}) [E'_0 \cos(\mathbf{k}' \cdot \mathbf{r} - \omega t) - E''_0 \sin(\mathbf{k}' \cdot \mathbf{r} - \omega t)].$

a) As a function of time, the field oscillates at the angular frequency ω .

b) The factor $\exp(-\mathbf{k}'' \cdot \mathbf{r})$ is responsible for the decay of the field amplitude. The *E*-field thus decays along the direction of \mathbf{k}'' at a rate determined by the magnitude k'' of the vector \mathbf{k}'' . The planes of constant amplitude are perpendicular to \mathbf{k}'' .

c) The phase of the *E*-field is the argument of the sine and cosine functions, namely, $\mathbf{k}' \cdot \mathbf{r} - \omega t$. At any given time *t*, the phase is the same for all the points \mathbf{r} in a plane perpendicular to \mathbf{k}' . Thus, within each and every plane that is perpendicular to \mathbf{k}' , the *E*-field has the same phase at any given instant *t* of time. If two such planes are separated by a distance of $2\pi/k'$ (along the direction of \mathbf{k}'), the phase difference between the two planes will be

$$(\mathbf{k}' \cdot \mathbf{r}_1 - \omega t) - (\mathbf{k}' \cdot \mathbf{r}_2 - \omega t) = \mathbf{k}' \cdot (\mathbf{r}_1 - \mathbf{r}_2) = k'(2\pi/k') = 2\pi$$

Therefore, at any given time t, the E-field amplitude is the same in all the planes that are perpendicular to \mathbf{k}' and are separated from each other (along the direction of \mathbf{k}') by a distance of $2\pi/k'$.

Consider an arbitrary point in the three-dimensional Euclidean space whose position vector \mathbf{r} is aligned with the vector \mathbf{k}' . If the length of this vector is increased by Δr while the time is advanced by Δt , the phase of the *E*-field will change by $k'\Delta r - \omega\Delta t$. The change of phase will be zero if $\Delta r/\Delta t = \omega/k'$. The phase velocity of the plane-wave is, therefore, $V_{\text{phase}} = \omega/k'$.

d) The polarization state of the plane-wave is determined by E'_0 and E''_0 . The beam is linearly polarized if $E'_0 = 0$, or $E''_0 = 0$, or E''_0 and E''_0 are parallel to each other. The beam is circularly polarized if E'_0 and E''_0 have equal lengths *and* are perpendicular to each other.