Opti 501

Solutions

Problem 2.53) a) The linear velocity of the spherical surface is $V(\rho = R, \theta, \phi) = (R \sin \theta)\omega \hat{\phi}$. Therefore, the surface current density is $J_s(R, \theta, \phi, t) = \sigma_s V(R, \theta, \phi) = (R\omega\sigma_s \sin\theta)\hat{\phi}$. The units of J_s are the units of R [m] times the units of ω [sec⁻¹] times the units of σ_s [coulomb/m²], namely, [ampere/m].

b) In spherical coordinates, the divergence of the vector field J_s whose only component is along the ϕ -axis, is given by $\nabla \cdot J_s = \frac{1}{R \sin \theta} \frac{\partial J_{s\phi}}{\partial \phi} = 0$. Since the surface-charge-density σ_s has no timedependence, its derivative with respect to time is zero, that is, $\frac{\partial \sigma_s}{\partial t} = 0$. Clearly, $\nabla \cdot J_s + \frac{\partial \sigma_s}{\partial t} = 0$.