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Opti 501 Solutions 1/1 

Problem 2.47) a) The current-density 𝐽𝐽𝑠𝑠1𝒛𝒛� of the inner cylinder produces a current-density 
(𝑅𝑅1 𝜌𝜌⁄ )𝐽𝐽𝑠𝑠1𝝆𝝆� in the upper end-cap as the current leaves the inner cylinder and moves radially 
outward toward the outer cylinder; here 𝜌𝜌 is the radial distance from the cylinder axis. The 
current-density in the outer cylinder is then given by 𝑱𝑱𝑠𝑠2 = −(𝑅𝑅1 𝑅𝑅2⁄ )𝐽𝐽𝑠𝑠1𝒛𝒛�. The current returns to 
the inner cylinder via the lower end-cap, where the current-density −(𝑅𝑅1 𝜌𝜌⁄ )𝐽𝐽𝑠𝑠1𝝆𝝆� is equal in 
magnitude but opposite in direction to that in the upper cap. 

b) This is a magneto-static problem involving time-independent current and no charges; 
therefore, there is no 𝐸𝐸-field and the magnetic field throughout the entire space is going to be 
time-independent. Based on our knowledge of infinitely-long cylinders with a uniform current 
flowing along their axis of symmetry, we suspect the magnetic field in the present problem to be 
azimuthally directed within the cavity (i.e., in the region between the two cylinders), with a 
magnitude that drops in proportion to the inverse of the distance 𝜌𝜌 from the cylinder axis, that is, 
𝑯𝑯(𝒓𝒓) = 𝐻𝐻0𝝋𝝋�/𝜌𝜌. The unknown constant 𝐻𝐻0 is determined by matching the boundary conditions. 
The 𝐻𝐻-field inside the inner cylinder (i.e., in the region 𝜌𝜌 < 𝑅𝑅1) is expected to be zero. 

Now, at the surface of the inner cylinder, the discontinuity in the 𝐻𝐻-field along 𝝋𝝋�  will be 
𝐻𝐻0/𝑅𝑅1, which must be equal to the surface current-density 𝐽𝐽𝑠𝑠1 along 𝒛𝒛�. Consequently, 𝐻𝐻0 =
𝑅𝑅1 𝐽𝐽𝑠𝑠1. The magnetic field trapped in the region between the two cylinders is thus seen to be 

 𝑯𝑯(𝒓𝒓, 𝑡𝑡) = �𝑅𝑅1𝐽𝐽𝑠𝑠1
𝜌𝜌
�𝝋𝝋� ;              𝑅𝑅1 < 𝜌𝜌 < 𝑅𝑅2,   |𝑧𝑧| < ½𝐿𝐿. (1) 

The magnitude of the above field is equal to the surface current-density of the outer cylinder 
at 𝜌𝜌 = 𝑅𝑅2, and also equal to the surface current-densities of the end-caps at 𝑧𝑧 = ±½𝐿𝐿. The 
orientation of the above 𝐻𝐻-field at the inner walls of the cavity is also consistent with Maxwell’s 
boundary condition at these surfaces. It is thus seen that the 𝐻𝐻-field outside the cavity must 
vanish everywhere for the boundary condition (i.e., 𝐻𝐻-field discontinuity = surface current-
density) to be satisfied at all four surfaces. We conclude that the magnetic field outside the cavity 
is zero everywhere. 

Maxwell’s relevant equations for magnetostatics are 𝜵𝜵 × 𝑯𝑯(𝒓𝒓) = 𝑱𝑱free and 𝜵𝜵 ∙ 𝑩𝑩(𝒓𝒓) = 0. In 
the present problem, 𝑩𝑩(𝒓𝒓) = 𝜇𝜇0𝑯𝑯(𝒓𝒓) everywhere. Outside the cavity, the 𝐻𝐻-field is zero, which 
obviously satisfies both equations. Inside the cavity, 𝑱𝑱free = 0; therefore, both 𝜵𝜵 ∙ 𝑯𝑯(𝒓𝒓) and 
𝜵𝜵 × 𝑯𝑯(𝒓𝒓) must vanish. We have 

 𝜵𝜵 ∙ 𝑯𝑯(𝒓𝒓) = 𝜕𝜕�𝜌𝜌𝐻𝐻𝜌𝜌�
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= 0. (2) 
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𝒛𝒛� = 0. (3) 

Thus the magnetic field of Eq.(1) satisfies all the relevant equations of Maxwell. In addition, 
when the 𝐻𝐻-field outside the cavity is assumed to be zero, the boundary conditions at the inner 
walls of the cavity are simultaneously satisfied. The uniqueness of solutions of Maxwell’s 
equations thus guarantees that the correct field distribution has been identified. 
 


