Problem 2.45)

- a) $\boldsymbol{E}^{(\text{total})} = \boldsymbol{E}^{(\text{inc})} + \boldsymbol{E}^{(\text{ref})} = E_{o} \hat{\boldsymbol{x}} \left\{ \cos[(\omega/c) \, z \omega t] \cos[(\omega/c) \, z + \omega t] \right\} = 2E_{o} \hat{\boldsymbol{x}} \sin(\omega z/c) \sin(\omega t).$ $\boldsymbol{H}^{(\text{total})} = \boldsymbol{H}^{(\text{inc})} + \boldsymbol{H}^{(\text{ref})} = (E_{o}/Z_{o}) \hat{\boldsymbol{y}} \left\{ \cos[(\omega/c) \, z \omega t] + \cos[(\omega/c) \, z + \omega t] \right\} = 2(E_{o}/Z_{o}) \hat{\boldsymbol{y}} \cos(\omega z/c) \cos(\omega t).$
- b) The *E*-field vanishes where $\sin(\omega z/c) = 0$, that is, $z = 0, -\lambda/2, -\lambda, -3\lambda/2, \dots$. Here $\lambda = 2\pi c/\omega$. The *H*-field vanishes where $\cos(\omega z/c) = 0$, that is, $z = -\lambda/4, -3\lambda/4, -5\lambda/4, \dots$.
- c) Energy density of the *E*-field: $\frac{1}{2}\varepsilon_{o}|\boldsymbol{E}|^{2} = 2\varepsilon_{o}E_{o}^{2}\sin^{2}(\omega z/c)\sin^{2}(\omega t)$. Energy density of the *H*-field: $\frac{1}{2}\mu_{o}|\boldsymbol{H}|^{2} = 2\varepsilon_{o}E_{o}^{2}\cos^{2}(\omega z/c)\cos^{2}(\omega t)$.
- d) $\boldsymbol{S}(z,t) = \boldsymbol{E}^{(\text{total})} \times \boldsymbol{H}^{(\text{total})} = (E_o^2/Z_o) \hat{\boldsymbol{z}} \sin(2\omega z/c) \sin(2\omega t).$

The z-dependence of the Poynting vector, $\sin(2\omega z/c) = \sin(4\pi z/\lambda)$, reveals that S(z,t) is zero at all integer multiples of $\lambda/4$. Therefore, where either the *E*-field or the *H*-field of the standing wave has a node, no energy flows at all. The energy only flows along z in between these adjacent nodes, which are separated by intervals of $\Delta z = \lambda/4$. The time-dependence of the Poynting vector, $\sin(2\omega t)$, shows that energy flow along z changes direction at twice the optical frequency ω . There are periodic instants when the energy is entirely in the *E*-field, followed by instants when the energy is entirely in the *H*-field. In between, the energy moves either slightly to the right or slightly to the left along z, in order to maintain the *E*- and *H*-field energy profiles found in part (c).