Opti 501 Solutions 1/1

magnetization entering the box will be equal to that leaving the box and, therefore, the divergence of $M(r) = M_0 \hat{z}$ will be zero everywhere inside the sphere. The only points where the divergence will be nonzero are at the surface of the sphere. The figure shows a small, thin pillbox placed at $(r = R, \theta, \phi)$. Let *A* and *h* denote the base area and height of the pillbox, respectively; both *A* and *h* could be as small as desired. The flux of *M* entering from the bottom of the pillbox is $M_0A\cos\theta$, and this is the only contribution to the integral of $M(r)$ over

the pillbox surface, provided that *h* is much small than the pillbox diameter. The divergence of *M* at $(r = R, \theta, \phi)$ is thus given by $-M_0A\cos\theta/(Ah)$ in the limit of small *A* and *h*. Therefore, $\rho_{\text{bound}}^{(m)}(R, \theta, \phi) = M_0 \cos \theta / h$. Since the charges are confined to the surface, we should use the surface-charge-density $\sigma_{\text{bound}}^{(m)} = h \rho_{\text{bound}}^{(m)}$ instead of the volume charge-density. Consequently, $\sigma_{\text{bound}}^{(m)}(R, \theta, \phi) = M_{\text{o}} \cos \theta.$

To determine the bound electric current-density $J_{\text{bound}}^{(e)}$ $J_{\text{bound}}^{(e)} = \mu_0^{-1} \nabla \times M(r)$, we use a small rectangular loop (length = ℓ , width = w) at various locations within and on the surface of the sphere in order to calculate the curl of *M*. For all locations within the sphere and for all

orientations of the loop, the integral of $M(r)$ around the loop turns out to be zero. When the loop is placed on the surface at $(r = R, \theta, \phi)$ and oriented perpendicular to $\hat{\phi}$, as shown, the line integral on the lower leg of the loop will be nonzero ($\ell M_0 \sin \theta$). The curl of $M(r)$ will then be nonzero, as the other legs do not contribute to the integral, provided that $w \ll \ell$. The curl will then be given by $\left[\ell M_{0} \sin \theta/(\ell w)\right] \hat{\phi}$ in the limit when ℓ and w both tend to zero. The bound current-density at $(r = R, \theta, \phi)$ is thus given by

(e) bound $J_{\text{bound}}^{(e)} = \mu_0^{-1}(M_0 \sin \theta/w) \hat{\phi}$. Since the current is confined to a thin layer on the surface, we could use the surface-current-density $J_{s\text{-bound}}^{(e)} = w J_{\text{bound}}^{(e)}$ instead of the bulk current-density. Consequently, $J_{\text{s-bound}}^{(e)} = \mu_0^{-1} M_{\text{o}}$ $J_{\text{s-bound}}^{(e)} = \mu_0^{-1} M_{\text{o}} \sin \theta \hat{\phi}.$