Opti 501

Problem 2.37)

a) The polarization **P** has units of *coulomb/m*². Since the units of current are *ampere*, and since, by definition, electrical current I is the rate-of-flow of charge ΔQ during the time interval Δt , that is $I = \Delta Q/\Delta t$ in the limit when $\Delta t \rightarrow 0$, the units of charge are *coulomb=ampere·sec*. Therefore, the units of **P** are *ampere·sec/m*².

b) The magnetization \boldsymbol{M} has units of weber/ m^2 . Since, by definition, $\boldsymbol{B} = \mu_0 \boldsymbol{H} + \boldsymbol{M}$, the units of \boldsymbol{M} must be the same as those of \boldsymbol{B} . The Lorentz force law states that $\boldsymbol{F} = \boldsymbol{q}(\boldsymbol{E} + \boldsymbol{V} \times \boldsymbol{B})$, where \boldsymbol{F} is force (units: *newton*), \boldsymbol{q} is electrical charge (units: *coulomb*), \boldsymbol{E} is electric field (units: *volt/m*), \boldsymbol{V} is velocity (units: *m/sec*), and \boldsymbol{B} is magnetic induction (units: *weber/m²*). We may thus write: *newton=coulomb* · (*m/sec*) · (*weber/m²*). Now, from newton's law $\boldsymbol{F} = m\boldsymbol{a}$, we have *newton=kg* · *m/sec²*. Also, from $I = \Delta Q/\Delta t$, we have *coulomb=ampere* · *sec*. Consequently,

weber/ $m^2 = (kg \cdot m/sec^2)/(ampere \cdot m) = kg/(ampere \cdot sec^2).$

c) The electrical resistance *R* has units of *ohm*. According to Ohm's law, the voltage *V* and the current *I* of a resistor *R* are related via V = RI. Therefore, *R* has units of *volt/ampere*. From the Lorentz force law cited in part (b), we know that $newton=coulomb \cdot (volt/m)$, that is, $volt=newton \cdot m/coulomb=kg \cdot m^2/(ampere \cdot sec^3)$. Consequently, $ohm=kg \cdot m^2/(ampere^2 \cdot sec^3)$.

d) The units of capacitance *C* are *farad*. The relation between electrical charge on the plates of a capacitor and the voltage difference between those plates is Q = CV. Consequently,

 $farad = coulomb/volt = ampere \cdot sec/(newton \cdot m/coulomb) = ampere^2 \cdot sec^4/(kg \cdot m^2).$

e) The units of inductance *L* are *henry*. The relation between the voltage *V* and the current *I* of a solenoid are V = L(dI/dt). Therefore, the units of *L* must be *volt*·*sec/ampere*. We know from the Lorentz force law that *volt* = *newton*·*m/coulomb*. Consequently,

 $henry = newton \cdot m \cdot sec/(coulomb \cdot ampere) = kg \cdot m^2/(ampere^2 \cdot sec^2).$

f) The electromagnetic momentum-density $\mathbf{p}_{EM} = \mathbf{E} \times \mathbf{H}/c^2$ has units of the *E*-field times the units of the *H*-field divided by the units of velocity squared, i.e., $(volt/m) \cdot (ampere/m)/(m^2/sec^2)$. From the Lorentz force law we know that $volt/m = newton/coulomb = kg \cdot m/(sec^2 \cdot coulomb)$. Therefore, the units of \mathbf{p}_{EM} are $kg/(m^2 \cdot sec)$.