Solutions

Opti 501

Problem 2.36)

- a) Electric field E [volt/meter]: Use Newton's second law F = ma and the Lorentz force law F = qE. The units of force F are thus [kg · meter/sec²], and the units of the electric field are [kg · meter/(coulomb · sec²)] or [kg · meter/(ampere · sec³)].
- b) Magnetic induction **B** [weber/m²]: Use Faraday's law, $\nabla \times E = -\partial B/\partial t$, in conjunction with the units of **E** determined in part (a). The curl operator does differentiation with respect to spatial coordinates; therefore, the units of $\nabla \times E$ are those of **E** divided by the length unit, [meter]. On the right-hand-side of the equation, the time-derivative of **B** has the units of **B** divided by those of time, [second]. Consequently, [weber/m²] = [kg/(ampere \cdot sec²)].
- c) Poynting vector $S = E \times H$ [volt · ampere/m²]: The units of H are [ampere/meter], and the units of E were found in part (a) to be $[kg \cdot meter/(ampere \cdot \sec^3)]$. Multiplying the two, we find the units of S to be $[volt \cdot ampere/m^2] = [kg/sec^3]$. Note that S is expected to have the units of energy per unit area per unit time. Energy, however, has the units of force times displacement, that is, $[kg \cdot meter^2/sec^2]$. Dividing by $[meter^2 \cdot sec]$ then yields the units of S as before, namely, $[kg/sec^3]$.
- d) Permittivity of free space ε₀ [*farad/meter*]: The charge Q and the voltage V of a capacitor are related via Q = CV. The capacitance C has units of [*farad*], the units of Q are [*coulomb*] = [*ampere* · *sec*], and the units of V are [kg · *meter*²/(*ampere* · *sec*³)]; see part (a). Consequently, the units of ε₀ are [*farad/meter*] = [*ampere*² · sec⁴/(kg · *meter*³)].
- e) Permeability of free space μ₀ [*henry/meter*]: Use the fact that in free space B = μ₀H. The units of H are [*ampere/meter*]; those of B were found in part (b) to be [kg/(ampere · sec²)]. Consequently, the units of μ₀ are [*henry/meter*] = [kg · meter/(ampere² · sec²)].