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Problem 2.35) Assuming the point-charge q is uniformly distributed over the perimeter of the 
square, the linear charge-density will be q/(4L), corresponding to a constant current Io= qV/(4L), 
and a magnetic dipole moment mo= ¼µoqVL  z^ . The magnetization will then be given by 

M =µoqV  z^ /(4L H). 

In the presence of an external E-field directed along the x-axis, the Lorentz force qEo acting 
on the point-charge does mechanical work in the amount of qEoL when the particle moves the 
distance L along the leg of the square loop that is parallel to x. The kinetic energy of the particle 
thus increases by the amount of work done by the E-field. The particle then turns the corner and 
moves along the y-axis, where the E-field is perpendicular to its direction of motion and, 
therefore, does not affect its kinetic energy. Motion along the negative x direction, however, 
reduces the kinetic energy by qEoL, so that the particle returns to its original position after a 
round-trip time T = 4L /V with neither any gain nor loss of energy. (We are supposing here that 
the presence of the E-field does not change the period T by much, either because V is very large 
to begin with, or because the particle has a large mass m.) The rate-of-flow of mechanical energy 
per unit area per unit time along the y-axis may, therefore, be written as follows: 
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To confirm the above argument, we invoke the relativistic version of Newton’s law, 
Fx = dpx/dt, where Fx = qEo is the force, and px = mVx/√ 1−Vx

2/c2 is the linear momentum of the 
particle along the x-axis. Writing Vx = dx/dt, we integrate the equation of motion, as follows: 
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Clearly, the increase in the relativistic energy of the particle in traveling the distance L along 
the x-axis is given by qEoL, as expected. 

Next, we evaluate the change in the energy dE  and also in the momentum dp  of the particle 
as a result of a small increment dVx  in its velocity along the x-axis. We find 
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Therefore, ∆p ≈∆E /Vx = qEoL /Vx, provided that the change ∆Vx in the particle velocity along x is 
small enough for the above identities to hold. This ∆p  is then the difference between the linear 
momentum of the particle when it moves in the +y direction, and that when the particle moves in 
the –y direction, each event occupying roughly one quarter of each period, namely, T/4. In the x-
direction, Fx = qEo≈∆p /∆t  yields ∆t ≈L/Vx, consistent with our earlier assumption that ∆Vx in 
the presence of the E-field is small enough to keep the time spent along each leg of the square 
essentially unchanged. The average momentum-density along the y-axis is, therefore, given by 

¼∆p  y^ /(L2H) ≈ qEo  y^ /(4LHV) = MEo  y^ /(µoV 2) = εo(V/c)−2M ×E. 

In the limit when V→ c, the momentum density residing within the magnetic dipole in the 
presence of an external E-field is seen to be given by εoM ×E. This well-known property of 
magnetic materials is commonly referred to as “hidden momentum.” The corresponding “hidden 
energy” was identified earlier as having a flow rate of µo

−1M×E, independent of the velocity V 
of the circulating charged particle. In reality, the current loops at the core of magnetic dipoles are 
not amenable to acceleration and deceleration in an external E-field, contrary to what the simple 
model used in the present example might indicate. Such acceleration and deceleration of the 
circulating charge inevitably results in electromagnetic radiation, which is not an observed 
property of magnetic dipoles. If, in the presence of an external E-field, the circulating charge(s) 
manage to maintain a constant velocity V, it can be readily shown that the hidden-momentum 
density becomes εoM ×E, without requiring V to approach the speed of light c. The crucial 
difference between a real magnetic dipole and the rough model used in the present example is the 
continuous and robust distribution of the circulating charges that form its current loop. The 
robust structure of the loop opposes local acceleration and deceleration of the distributed charge-
density by the imposed E-field, even as the charges continue to exchange energy with the field, 
giving rise in the process to the aforementioned hidden energy and hidden momentum. 


