Problem 33) Let the mirror acquire a velocity *V* along a direction that makes an angle θ with the *x*-axis within the *xy*-plane. Denoting by \mathcal{E}' the energy of the light pulse after reflection, conservation of energy and momentum before and after reflection yields the following equations.

a) Relativistic treatment:

Energy conservation:
$$\mathcal{E} + M_{\rm o}c^2 = \mathcal{E}' + M_{\rm o}c^2/\sqrt{1 - V^2/c^2}$$
(1a)

Momentum conservation along x:
$$\mathcal{E}/c = M_0 V \cos \theta / \sqrt{1 - V^2/c^2}$$
 (1b)

Momentum conservation along y:

v:
$$(\mathcal{E}'/c) + M_0 V \sin \theta / \sqrt{1 - V^2/c^2} = 0$$
 (1c)

These three equations must now be solved for the three unknowns, \mathcal{E}', V , and θ . Dividing Eq.(1c) by Eq.(1b) yields: $\tan \theta = -\mathcal{E}'/\mathcal{E}$. Substituting $\mathcal{E}' = -\mathcal{E} \tan \theta$ in Eq.(1a) and solving for V, we find

$$\sqrt{1-V^2/c^2} = M_0 c^2 / [M_0 c^2 + (1+\tan\theta)\mathcal{E}],$$
 (2a)

$$V = c \sqrt{2M_{o}c^{2}(1 + \tan\theta)\mathcal{E} + (1 + \tan\theta)^{2}\mathcal{E}^{2}} / [M_{o}c^{2} + (1 + \tan\theta)\mathcal{E}].$$
(2b)

The above expressions for V and $\sqrt{1-V^2/c^2}$ may now be placed into Eq.(1b) to yield

$$\mathcal{E} = \cos\theta \sqrt{2}M_{\rm o}c^2(1 + \tan\theta)\mathcal{E} + (1 + \tan\theta)^2\mathcal{E}^2 \quad \rightarrow \quad \tan\theta = -1/[1 + (\mathcal{E}/M_{\rm o}c^2)]. \tag{3a}$$

Substitution into the preceding equations for \mathcal{E}' and V then yields

$$\mathcal{E}' = \mathcal{E}/[1 + (\mathcal{E}/M_0 c^2)], \tag{3b}$$

$$V = (\mathcal{E}/M_{o}c)\sqrt{2} + 2(\mathcal{E}/M_{o}c^{2}) + (\mathcal{E}/M_{o}c^{2})^{2}/[1 + (\mathcal{E}/M_{o}c^{2}) + (\mathcal{E}/M_{o}c^{2})^{2}].$$
 (3c)

b) Non-relativistic treatment:

Energy conservation:	$\mathcal{E} = \mathcal{E}' + \frac{1}{2} M_{\rm o} V^2$	(4a)
----------------------	--	------

Momentum conservation along x: $\mathcal{E}/c = M_0 V \cos \theta$ (4b)

Momentum conservation along y: $(\mathcal{E}'/c) + M_0 V \sin \theta = 0$ (4c)

These three equations must now be solved for the three unknowns, \mathcal{E}', V , and θ . Dividing Eq.(4c) by Eq.(4b) yields: $\tan \theta = -\mathcal{E}'/\mathcal{E}$. Substituting for \mathcal{E} and \mathcal{E}' from Eqs.(4b) and (4c) into Eq.(4a), then solving for V, yields $V = 2c(\cos \theta + \sin \theta)$. Placing this expression for V into Eq.(4b) and solving for $\tan \theta$, we find

$$\mathcal{E}/c = 2M_{o}c(\cos\theta + \sin\theta)\cos\theta = 2M_{o}c(1 + \tan\theta)\cos^{2}\theta = 2M_{o}c(1 + \tan\theta)/(1 + \tan^{2}\theta) \rightarrow$$

$$\tan\theta = (M_{\rm o}c^2/\mathcal{E}) \left[1 - \sqrt{1 + 2(\mathcal{E}/M_{\rm o}c^2) - (\mathcal{E}/M_{\rm o}c^2)^2} \right],$$
(5a)

$$\mathcal{E}' = -\mathcal{E} \tan \theta, \tag{5b}$$

$$V = 2c(1 + \tan\theta)/\sqrt{1 + \tan^2\theta}.$$
 (5c)