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Problem 2-25) For electric circuits, we rely on a quasi-static treatment in which the various
lumped circuit elements (e.g., resistors, capacitors, inductors, transistors, etc.) do not radiate
electro-magnetic waves. It is only within this quasi-static regime that one can define a voltage
difference (or potential drop) across an element as V, — V), = ffE - d#, then propose that the
sum of all voltage drops around a closed loop must be equal to zero (i.e., Kirchhoff’s voltage
rule). Obviously, if dB/dt # 0 within the area that is enclosed by the loop, then from Maxwell’s
third equation, ¢ E - d€ # 0. However, if the variations of B with time are slow enough (i.e.,
quasi-static approximation), then the Kirchhoff voltage rule stated above can be justified.

The Lorentz force law, f = q(E + V X B), is the statement of the force exerted by E and B
fields on a point-charge g moving with velocity V. However, V X B is always perpendicular to
the direction of motion (V) and, as such, no work can be done by the B-field on a moving
charge; the only work is done by the E-field. If the point-charge g moves a distance A€ under the
influence of an electric field E, then the work performed by the E-field on the charged particle
will be W = qE - A¥.

With reference to the simple resistor shown on the right, let p be
the charge-density within the resistor, S the cross-sectional area, and A¢ @ +
the incremental length of the shaded segment. The charge content of the
shaded area, AQ = pSA¥, moves out of the shaded area in time At. Thus
the current is given by I(t) = AQ/At = pSA¢/At. The work done on @— t
the charge AQ during the time-interval At is AW = AQ(E - Af) =
I(t)At(E - A®). Since I(t) at any given time t is the same everywhere along the length of the
resistor (Kirchhoff’s current rule), the total work done by the E-field on the charges within the
resistor may be written

W= [ dw = I()At [, E-de = [()V(D)AL.
Work and energy are the same thing; therefore, the energy given to the resistor between t

and t + At must be E(t) = V(t)I(t)At, and the electrical power delivered to the resistor is,

therefore, P(t) = E(t)/At = V(t)I(t). I(t) = 14(8) + (1)
If the circuit happens to have multiple branches, then the @i >

energy must be computed for each branch and subsequently —4
added up. In the circuit depicted on the right, both elements see ~ V(® Il(t) I2(t)
the same voltage drop V(t), but their respective currents are I; (t) —
and I, (t). The total electric power delivered to the circuit is then @

P(&) =V(OL®) +V(DI() = V(OIL®) + L(O] = V(©OI(®).

If V(t)I(t) > 0, then energy is delivered to the circuit from the outside. In contrast, if
V(t)I(t) < 0, then the circuit delivers energy to the outside world.

For an inductor, the same argument as used above for a resistor shows S——
that the power delivered to (or received from) the inductor may be expressed + I(t)
as P(t) = V(t)I(t). For a capacitor, however, the direct argument is difficult L§ V() ==cC
to make. Nevertheless, the parallel LC circuit shown on the right reveals that
the energy going into C must come out of L, and vice-versa. Hence for a -
capacitor, we also have P(t) = V(t)I(t).




