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Problem 2-25) For electric circuits, we rely on a quasi-static treatment in which the various 
lumped circuit elements (e.g., resistors, capacitors, inductors, transistors, etc.) do not radiate 
electro-magnetic waves. It is only within this quasi-static regime that one can define a voltage 
difference (or potential drop) across an element as 𝑉𝑎 − 𝑉𝑏 = ∫ 𝑬 ∙ 𝑑𝓵𝑏

𝑎 , then propose that the 
sum of all voltage drops around a closed loop must be equal to zero (i.e., Kirchhoff’s voltage 
rule). Obviously, if 𝜕𝑩/𝜕𝑡 ≠ 0 within the area that is enclosed by the loop, then from Maxwell’s 
third equation, ∮𝑬 ∙ 𝑑𝓵 ≠ 0. However, if the variations of 𝑩 with time are slow enough (i.e., 
quasi-static approximation), then the Kirchhoff voltage rule stated above can be justified. 

The Lorentz force law, 𝒇 = 𝑞(𝑬 + 𝑽 × 𝑩), is the statement of the force exerted by 𝑬 and 𝑩 
fields on a point-charge 𝑞 moving with velocity 𝑽. However, 𝑽 × 𝑩 is always perpendicular to 
the direction of motion (𝑽) and, as such, no work can be done by the 𝐵-field on a moving 
charge; the only work is done by the 𝐸-field. If the point-charge 𝑞 moves a distance ∆𝓵 under the 
influence of an electric field 𝑬, then the work performed by the 𝐸-field on the charged particle 
will be 𝑊 = 𝑞𝑬 ∙ ∆𝓵. 

With reference to the simple resistor shown on the right, let 𝜌 be 
the charge-density within the resistor, 𝑆 the cross-sectional area, and ∆ℓ 
the incremental length of the shaded segment. The charge content of the 
shaded area, ∆𝑄 = 𝜌𝑆∆ℓ, moves out of the shaded area in time ∆𝑡. Thus 
the current is given by 𝐼(𝑡) = ∆𝑄 ∆𝑡⁄ = 𝜌𝑆∆ℓ/∆𝑡. The work done on 
the charge ∆𝑄 during the time-interval ∆𝑡 is ∆𝑊 = ∆𝑄(𝑬 ∙ ∆𝓵) =
𝐼(𝑡)∆𝑡(𝑬 ∙ ∆𝓵). Since 𝐼(𝑡) at any given time 𝑡 is the same everywhere along the length of the 
resistor (Kirchhoff’s current rule), the total work done by the 𝐸-field on the charges within the 
resistor may be written 
 𝑊 = ∫ 𝑑𝑊𝑏

𝑎 = 𝐼(𝑡)∆𝑡 ∫ 𝑬 ∙ 𝑑𝓵𝑏
𝑎 = 𝐼(𝑡)𝑉(𝑡)∆𝑡. 

Work and energy are the same thing; therefore, the energy given to the resistor between 𝑡 
and 𝑡 + ∆𝑡 must be ℰ(𝑡) = 𝑉(𝑡)𝐼(𝑡)∆𝑡, and the electrical power delivered to the resistor is, 
therefore, 𝑃(𝑡) = ℰ(𝑡)/∆𝑡 = 𝑉(𝑡)𝐼(𝑡). 

If the circuit happens to have multiple branches, then the 
energy must be computed for each branch and subsequently 
added up. In the circuit depicted on the right, both elements see 
the same voltage drop 𝑉(𝑡), but their respective currents are 𝐼1(𝑡) 
and 𝐼2(𝑡). The total electric power delivered to the circuit is then 

 𝑃(𝑡) = 𝑉(𝑡)𝐼1(𝑡) + 𝑉(𝑡)𝐼2(𝑡) = 𝑉(𝑡)[𝐼1(𝑡) + 𝐼2(𝑡)] = 𝑉(𝑡)𝐼(𝑡).  

If 𝑉(𝑡)𝐼(𝑡) > 0, then energy is delivered to the circuit from the outside. In contrast, if 
𝑉(𝑡)𝐼(𝑡) < 0, then the circuit delivers energy to the outside world. 
 

For an inductor, the same argument as used above for a resistor shows 
that the power delivered to (or received from) the inductor may be expressed 
as 𝑃(𝑡) = 𝑉(𝑡)𝐼(𝑡). For a capacitor, however, the direct argument is difficult 
to make. Nevertheless, the parallel 𝐿𝐶 circuit shown on the right reveals that 
the energy going into 𝐶 must come out of 𝐿, and vice-versa. Hence for a 
capacitor, we also have 𝑃(𝑡) = 𝑉(𝑡)𝐼(𝑡). 
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